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ABSTRACT 

This research effort presents a new approach to programming language design. 

Essentially, we have studied the close relationships of program structures and the data 

structures they use, and found that reorienting programming style to emphasize these 

relationships is a fruitful direction for fut ire language designs. As a vehicle for 

studying these relationships, a language "basis" is developed—a set of primitives, a 

syntax, and ar interpretation. The basis is "incomplete" in that it does not define a real 

programming language, nor are all "fundamental" aspects of language design considered. 

However, one is able to describe many algorithms concisely in the basis, which leads us 
to believe it represents a significant step in programming language design. 

We may ascribe the primary influences on the work to structured programming 

studies and the programming languages Bliss, APL, and LISP. Secondary influences 

include formal approaches to language design and program optimization. The parallel 

work of Backus shares the basic precepts of pointerless representation and the concise 

nature of combmatoric constructs; however, they differ radically in both approach and 
emphasis. 

Our approach to the design of the basis may be characterized as a derivative of 
"structured programming" studies. In particular, "gotoless programming" proponents 

advocate replacement of most explicit program pointers ("goto's) in programming 

languages by a set of control constructs—grouping, subroutine call, conditional, 

selection, looping, and escape facilities—which impose a nested-sequential static 

structure on programs. The germinal idea of this work is that perhaps the gotoless 

constructs can be applied to nested-sequential structures in general—independent of 
whether the structure is thought to represent program or data. We will then have a 
"pointerless" representation for both structures. 

Another desirable aspect of programs is that the invocation of the "next" instruction 

to be executed is implicit; conventional data structures, on the other hand, must be 

explicitly "pulsed" to obtain the next element. Very often, a one-to-one identification 

can be made between program elements and the data structure elements they access. 

(For example, a one-to-one identification between elements of an array and the 

incarnations of a loop body can frequently be made.) The basis is designed to emphasize 

this aspect of programs through the use of operators which apply programs to data 
"cosequentially". 

H 

 -■  - -  

.    . 



One of the "gotoless" constructs which does constitute use of an explicit "program 
pomter" is the (potentially recursive) subroutine call. The research proposes 

structuring the use of this pointer by substituting a set of "recursionless" constructs in 

traditional programming languages (such as Algol); the analogy with "gotoless" 

constructs is direct-no explicit recursive ctU« are required for recursive effects. The 

data structure involved in implementing a recursive function parameter mechanism 

follows the control structure so explicitly that a stack is frequently used to contain both 

data and control information. Torecursive" operators-directly analogous to 

cosequential operators-are thus introduced to emphasize the close relationship 
between recursive data and control structures. 

In specifying a programming language "basis", we are admitting open-endedness a 

priori. We feel that a formalization of this basis should prove beneficial to program 

correctness techniques and formal semantics specification language development 

Additionally, program/data st.ucture optimization and representation issues are unified 

by the approach. We txptct that a language developed from this basis will be 

analogous in power for nested-sequential structures to APL for homogeneous, parallel 
structures. 
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CHAPTER  I 

INTRODUCTION AND APPROACH 

Goals 

All research in the field of programming language design requires justification in this 

era of language proliferation. The fashionable criterion for effective progress in this 

field is that any new language provide an "order of magnitude improvement" over the 

existing paragon. Until a language meets the criterion, there should be no new 

compilers, no reprogramming, no low-yield design efforts, etc. Aside from the obvious 

fiscal benefits, new language projects should decrease and the field of programming 

languages should advance by more fundamental, largf m-rements. Additionally, fie 

criterion is "suitably vague") a designer who claims ms new language meets it nust 

identify the nature of the improvement that the language represents. 

The primary goal of this dissertation is to indicate that an order of magnitude 

improvement in general purpose programming languages is possible, and to provide a 

basis for such a language. The basis is such that its extension to a real programming 

language is non-trivial. Rarely can traditional language constructs enter the language 

unaltered; frequently, they are found already embedded in the language in a 

fundamental way. Some justification will be given for suspecting that consistent 

incorporation of truly alien constructs into the language tends to be "synergistic"--the 

actual gam is more than could have been expected from experience with the constructs 
in other languages. 

Indeed, the development of the language basis did not proceed from the criterion 

above, but rather from insight into a pointerless program/data structure representation 

arising from structured programming "gotoless" program studies. The resultant basis 

was observably more concise than general purpose programming languages such as 

Algol [NA]. Hence, as an attempt to discern the source of this conciseness, the order of 

magnitude criterion was studied in terms of languages which have in some sense met 

the criterion (with respect to their predecessors). We concluded that fundamental 
improvement in languages has not arisen from extension of contemporary languages, but 

rather by a reformulation of languages which emphasize common interrelationships of 
concepts obscured in their predecessors. 

The somewhat pretentious claim that our considerations of the germinal "pointerless 
representation" concept may lead to a programming language which meets the order of 

magnitude criterion is not intended to belittle the original considerations in the 
development of the basis, but rather to emphasize their importance. 

-    -    ■    -    -■-■   --      --"—■—■■-         ,,     i.ii.iiJMI*iM—üil  1^1    •-        ■ a*t     ■ --■   --■     -    ■■   --       .-J—1--^-^—.t^w^-. .-■.— -^-.-^-     ...   



INTRODUCTION AND APPROACH 

We proceed by placing this work in the programming language design milieu. Next 
the order of magnitude improvement criterion is examined more closely, along with 

aspects of language design contributing toward its satisfaction. We then establish the 
approach and essential concepts embodied in the remainder of this work. 

Programming Language Design: State of the Art 

Most higher level languages of the early 1960s did meet the "order of magnitude" 

criterion when compared with machine language or even, in some cases, FORTRAN (e.g. 

APL, SNOBOL and LISP for wide (disjoint) classes of problems)! However, in the late 

1960s and the early 1970s computer scientists began to focus on the fundamental 

concepts underlying the activity of programming and the machines for which programs 
are written. 

1.    The stimulation of machine technology 

The rapid pace of hardware innovations has certainly kept one group of 
programming language designers active; machines such as the St?' [HT] and ILLIAC IV 

[BN] have features to occupy designers in merely allowing the higher-level language 

programmer to use the machine effectively. A related group of 

designers-disenchanted with the inefficiencies of general purpose languages-have 

resorted to lower-level machine-oriented implementation languages; languaces such as 

Pascal [WI] and Bliss [WU,1971] have in fact contributed to the field of higher-level 
language design, although that was at most a subordinate goal in their design. 

The technology has further stimulated programming efforts in systems concepts; 

paging, networks, associative memories, protection systems, etc., have all caused existing 

programming languages to be reexamined, especially to determine whether applicability 

of the concepts should be discovered by compilers or extensions made to facilitate their 

use directly. Real-time facilities, exotic new peripherals, "applications" systems, and 

microprogramming are only beginning to influence programming language design-as 

evidenced by recent interest in "two-dimensioal languages", for example [WM]. 

Despite activity in the technological areas, with the exception of implementation 

languages and graphics languages, the approach has been to extend existing languages, 

rather than to invent new languages incorporating or anticipating hardware technology 

in any fundamental way. It is more probable that we do not understand the implications 

of features like streaming and parallelism than that they will not ultimately affect the 

tSee [BA,1957], [McCR], [IV], [PAK], [FGP], [GPP], and [McC]. 
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INTRODUCTION AND APPROACH 3 

heart of programming language design. 

2.    Formal and informal methodologies 

Another group of programming language designers has begun to address the 

problem of finding the fundamental underlying concepts of the activity of programming. 

There are many approaches to this problem. Formal approaches include formal 

semantics specifications for entire programming languages, program "schemata" studies, 

program verification efforts, and various axiomdtizations suitable for correctness proofs 

for pa-ticular programs in specific languages'1'. Rigorous approaches to systems 

programming problems--cooperating sequential processes and protection schemes, for 

example--provide practical problems for which formal analysis is a tool of obvious and 

immediate benefittt. 

"oiructured programming" presents a more empirical view of the activity of 

programming; here the language design issue is primarily "can we use what we have?" 

and only secondarily "how should w« improve itfttt. Even here the approach tends to 

be mildly formal--propcrties preserved or destroyed by control constructs, for e> ample, 

are closely examined and the "correct" way to program is preferably the way which 

may be proved correct. However, the formal approach is a means to an end: 

enhancement of understandability, principally through enforcement of a hierarchical 

programming style. Considerable practical experience has led theoretical computer 

scientists to accept "gotoless programming" as an improved technique [DI,1968], 

[WU,197I]. Also, features for controlling the ill-structured properties of global 

variables are emerging [WS]. 

A related issue is the management of large programming efforts—modularization a la 

Parnas [PA]. Conventional decompositions of programming tasks tend to maximize 

knowledge of the interfaces between components; a modularization which minimizes such 

knowledge has been found to result in more easily modifiable systems. Unfortunately, 

the decomposition is often orthogonal to that proposed by "structured programming" 

enthusiasts. 

tSee [AJS], [1A], [CG], [SN], [KI] and [GR]. 

•I'tSee [Dl,May,1968], [HA], and [BH]. 

tttSee [DI,1969], [HO], [WU], and [WS]. 



INTRODUCTION AND APPROACH 

Other management issues a: e attacked by ihose interested in bootstrapping and 
transportability!-, the major impact of these issues on programming language design it to 

cause more exact distinction between the fundamental features of a language and those 

which are actually syntactically or interpretively evtensible from the language core or 

present for effiuency. Those interested in program management are approaching 

language desifn from a fundamentalist viewpoint; we may expect at least the core of 

future languaf er. from this group to be very sparse, compact and logically consistent. 

3.     Maturity 

Of course, it is unfair  to divide programming language design exclusively into two 

camps-technology   and   management.     General   purpose   languages   continue   to   be 

designed    and   implemented.      However,   many   compute,-   scientists   feel   that   large 
omnibus" languages such as Algol 68. PL/1 and Simula 67tf represent the end of the 

large language era for several reasons: 

1. They havt stimulated enough problems m their implementation and 
desciption to keep computer scientists busy simply trying to 
unterstand them; 

2. Experience with them is so limited that no one can propose 

absolutely better solutions for the problems they pose; in particular, 

meager evidence does not show an "order of magnitude" return for 
the investment, either in size or complexity decrease; 

and 

3. There is a general hope among computer scientists that prop/amming 
languages need not be that complex. 

Programming language design has also matured significantly since the early 1960s 

Algol 60 [NA] is no longer thought divine, but has rather entered the small group of 
universally understood languages-along with FORTRAN, LISP, and SNOBOL APL is 

generally   taken   more   seriously   than   previously,   although   its   merits   are   far   from 

tSoe [BR],[WA,1967,1970]. 

ttSee LvW,1969], [IBM], and [DMN]. 
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INTRODUCTION AND APPROACH 

universally   recognized.     Higher  level  languages  have  become  viable  alternatives  to 
assembly languages for systems problems. 

Emphasis in the language design f,eld has sh,fted from the study of syntax and 

compHer-compHers to "semant,cs"; the former stud^s have been subjugated to the 

study o extensible languages, pursued by an act,ve (though currently d.sNIusioned) 

group of des^ners [SCH]. issues of scope, storage management, control structures and 

dat. strudures-although in no cense resolved-are considerably better understood. 

The new languages wh,ch have ansen from hardware technology or program 

management studies have been treated m the literature with emphasis on the technical 
or management issues they consider. 

In summary, those computer scenhsts in the mamstream of programming language 
research are not designing programming languages. 

Language Design: Trade between Technology and Formalism 

General purpose programming language designers tend to emphasize either formal 
or technological innovations in the languages they design; however, they cannot 
satisfactorily rely wholly on either. The disparity between machine/system design and 

formal axiomatization makes formal languages unusable from a practical standpoint 
Similarly, the often ad hoc nature of advances in machine design, which are frequently 

poorly matched with the systems and languages in wh,ch they are ultimately embedded 

makes a purely technological approach unacceptable from a management viewpoint. 

Certainly, a trend of the past decade is toward mutual trade between the formal and 

echnological fields. In particular, formalists no longer propose alternatives to Turing 

Machines unless the emphasis .s toward a more practical, realistic model of computing, 

i.e the emphasis is no longer a bas.s for computablity. Computers, not computability. 

motivate he formal approaches to problems such as assignment, data structure 

axiomatizations and (to some extent) complexity. Analogously, programming languages 

have borrowed the mathematically precise notions embodied in association mechanisms 

and Set operations. Structured programming" and systems programming algorithms are 

requenty proved correct, using rigorous approaches previously found only in the more 
tormal studies. 

The language basis developed below borrows extensively from both progamming 

languages and formal applications. In searching for a powerful computation base 

applicative    languages    are    found   to   provide   a   pointer-free   representation   fo 
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computation. Without (tottroying this representation by in'roducmg the troublesome 

notions of "assignment" and "side-effects", a sequence cen.rat.on mechanism ,s included 

M an abstraction of the process wh,ch computers perform. Although the notations 

used appear formal, the treatment is not. The results are pfMOnted as fruitful 

directions for the design of future programming languages, not as an attempt to 

mcorporate particular aspects of cjrrent hardware technology mto a formal basis for 
cemputation. 

Order of Mdp.mtude Improvement 

The "order of magnitude improvement" criterion it intentionally vague; many 

individual aspect! of programming languages could be improved by a factor of ten 

without a corresponding improvement In the overall task of designina, writing 

debugging, running, and modifying a program in the langauage. Possibly" the only 

prec.se definition of an order of magnitude improvement in general purpose 

programming languages would be economic-in terms of the total cost of developing and 

using a program, measured for a diversified group of programs and programmers over 

an extended period of timet. Certainly programming ,n the improved language must 

become m ,re natural to a large group of programmers, and implementations of programs 
must become more powerful. 

Insisting that the implem,entation of a language be efficient on current machines 

requires the definition to be relatively insensitive to hardware advances This poses 

two roqui oments: (1) the language must be futuristic enough to predict machine 

•Chnology advances, lest it be obsolete immediately, and (2) it must not depend on 

uture technology for ,ts acceptance. However, it ,s unlikely that a language meeting 

the criterion could be developed which doe. not require at least some improvement in 

CM ^ni'^u ,eChniqUeC f0r ^^ mach'^ r-peciallZed languages such as APL and 
SNOBOL which have (intuitively) met the criterion certainly require such advance^ for 

acceptable implementation efficiency. Hence, although we wish to constrain our 

considerations of the order of magnitude criterion to language design as influenced by 

natural conceptualization of problems, implementation considerations cannot be ignored 
a 

tlhe criterion probably arose in response to the economic question, how much better 

must a language be to warrent the vast implementation and programme, retraining costs 

entailed by a new language? This initial overhead factor would be required in the 
definition. 

■kaataiuiato 



INTRODUCTION AND APPROACH 

Although we do not propose an exact definition of the order of magnitude 

improvement criterion, it is clear that one economic effect must be that programming 
must take less time than it does currently. 

There are several approaches to decreasing the time required to program. Ignoring 

the special-purpose language approach (we want a "general purpose" language), the 

principal methods seem to hinge about the ability of a language to eliminate the 

specification of "detail" that is necessarily specified in other programmng languages 

Hence, for our purposes, we shall assume that a language in which programs need 

contain only ono tenth of the detail that would be required in current languages, 

represents an order of magnitude improvement in general purpose language design. At 

least two constraints are appropriate: (1) the new language must be implementable 

approximately as efficiently as those against which it is compared, and (2) the gams in 

concise speci'ication of algorithms must not suffer from tne "write only language" 

syndrome—complexity of interpretation of language constructs must not defeat gains in 

conciseness. The principal effect of th,s latter constraint is to insure that programs are 

not necessarily poorly structured. Below we present a discussion of language design 

mechanisms for eliminating detail. Featu:es will be presented as methods for 

introducing conciseness; aspects which mitrate against structure or efficiency will be 
mentioned. 

I.    Conciseness 

Higher level language design may be viewed as an attempt to make programs more 

concise while preserving their structure. Note first that, although cncise primitives 

are desirable, a blind attempt to minimize the number of primitives involves some loss of 

efficiency whenever the underlying model is more powerful than the language itself. 

For example, if the successor function is the only mechanism for addition, any 

implementation on a machine with addition as primitive will be inefficient. 

One of the principal methods for reducing a program's length is to eliminate or limit 

the number and scope of "temporarily defined names" used by the programmert. The 

most prevalent mechanisms for achieving this end are the inclusion of operators in a 

language and the ability to define functions. Both have the effect of making the 

program more concise by eliminating the necessity to initialize a temporary name—e.g. 

a register—and then perform an operation on it—e.g. i machine code command. The 

recent trend toward "expression languages" is an extension of this notion; languages 

tTraditionally the phrase "temporarily defined names" refers to internal names 

generated by a compiler. Here we mean names generated by the programmer for 
temporary use. 

- ■ ■■ 
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INTRODUCTION AND APPROACH 

tends to la| behind machines from fear of inefficient implementation on current 

machines. Sadly, natural formulations in programming languages of techniques such as 
streaming and microprogramming are not their raisons d'etre. 

Fortunately, recent developments in structured programming (e.g. gotolessness) 
and operating systems (e.g. P and V synchronization) have emerged despite 

inefficiency qualms (control structures were subsequently optimized and now no one 

really worries about their inefficiency). Languages like SNOBOL and APL are 

particularly noteworthy in that they have provided a conceptual framework for 

constrained data structures. Their conciseness for problems over the class of data 

structures for which they were designed is remarkable; their power derives from the 

fact that detail related to implementation of the structures and operations on them is 

subsumed in the implementation. That is, enough is known about the structures that an 

acceptably efficient implementation can be built; the conciseness is often worth the 

price of even poor implementations. Of course, these languages (in particular) lose 

their leverage when problems outside their respective realms are attempted. Although 

inclusion of more sophisticated control constructs would have enhanced their 

applicability, the scope of their power is limited by the inability of their conceptual 

structures—strings and homogeneous arrays—to model many aspects of the structures 

used in computing. Naturally, part of their power derives from the assumptions they 
can make about these limitations. 

2.    Structure 

Conciseness as an ultimate goal in language design has some limitations. Natural 

languages in particular contain redundancies which emphasize linguistic structure—which 

then render unnaturalness "apparent" as was mentioned above. Redundancy in 

programming languages is minimal, although one might argue that the preference of 

parenthesization to oostfix notation in languages constitutes a concession to 

redundancy. We are unable to propose any particularly effective methods for utilizing 

redundancy in language design. However, a "structured decomposition" of a language, 

and of the specifications of algorithms in the language, is considered desirable. 

Inasmuch as "conciseness" has received considerable emphasis as a means for 
meeting the order of magnitude criterion, its relationship to "structure" deserves some 

attention.   Reactions to APL "one-liners"t often leads (non-APL) programmers to believe 

tThe "one-liners" are normally extremely complex, involve several APL operators, "just 
fit" on one line, and accomplish tasks of considerable difficulty. 

--- 
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that the ultimate in conciseness is incomprehensibility. Indeed, encoding techniques 

more properly constitute the ultimate in conciseness, and may even have 
incomprehensibility as their goal. 

However, we claim that most APL "one-liners" are not sufficiently concise! The 

principal grounds for such a claim lie in the fact that "structure" often aids conciseness 

to the extent that once inside the context of a structured entity, the representation for 

any particula;' effect is more concise than were the structure not present. For example, 

the principal rear.on the APL one-liner is concise in ',he first place arises from the vast 

structure of APL--in whose context the expression must be interpreted. The claim that 

most APL one liners are not sufficiently concise is simply a claim that their programmers 

have not found structural similarities between the one-lmer and the other programs 

they have written. That is, in the context of programming (over a period of time, as 

opposed to writing a particular program), the one-liner is probably decomposable into 

previously obtained effects which should have been factored from the expression as 

functions. Certainly, when common effects can not conceivably be recognized--i.e.( 

when generalization seems unlikely--we prefer a structured decomposition of a 
one-liner, while granting its superior conciseness. 

In summary, we must find intrinsically powerful primitives wnose relationships, 

though complex, provide sufficiently constrained assumptions for efficient 

implemeniation, and which are amenable to change as well as concise description. In 

the remainder of the thesis, a broader base for structures-nested sequences—is used. 

We can therefore expect our assumptions to be less powerful than either of the above 
languages allow. However the power gained by the naturalness of this structure to 

machine computation should, in general, offset that lost by the less rigid assumptions, 
and a more -oncise language for a wider class of problems will result. 

Pointerless Representation 

1.    "Gotoless programming" 

We begin by examining one recent technique developed by proponents of 

structured programming—removal of the goto statement from programming languages. 

Essentially, this removal involves the substitution of a "complete"t set of control 

constructs for the goto.    For example, the set might include subroutine call, selection, 

f'Complete" in a pragmatic sense, more than mathematical.   In particular, the set is in no 
way computationally "minimal". 

■■ ■■   
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grouping, conditional, loop and escape facilities. Tl,r set mentioned is not complete in 

the r.en.e that every control structure obta' iable with the goto can be simply 

represented using these constructs; rather the philosophy imposed is that the 

constructs point oul those uses of the goto which are dangerously complex. In fact, the 

set mentioned is not complete from another viewpoint: the forced representation of 

certain useful, safe constructs is unduly complex. (The coroutine, "enable" mechanism, 

and "select" expression in Bliss represent concessions to this incompleteness 

[WU,1972].) Gotoless language designers resist the urge to remtroduce the goto in 

order to obtain sue!  constructs, preferring to extend the set of gotoless constructs. 

One of the principal benefits of gotoless languages arises from the effective removal 

of explicit program pointers from the language (Ly constraining pointers to particular 

objects in a local context). While the programs winch can be written in the language 

are visibly less complex than in a language with gotos, the complexity of the underlying 

structure discoverable by a compiler is actually increased. Ihis increase is not simply 

an amount which would make the efficiency of gotoless languages comensurate with 

languages with the goto, but is actually a significant increase beyond that, arising from 

the assumptions about language elements which gotolessness allows. Recent work in 

code optimization by Gesenke [GEJ exploits this gam; recent work by Hansen [HAN] 

indicates that such considerations need not lead to inefficiencies in the compilation 

process. 

2.    Pointers in programs 

An examination of programming languages in general indicates that misuse of the 

goto (this notion is now well-defined) is only symptomatu of problems introduced by 

the use of pointers in programming languagts. In effect, gotolessness controls 

program-to-program pointers; it says nothing about progrnm-to-data and data-to-data 

pointers, both of which present problems at least as rompi.?x as those introduced by the 

goto. The problems incurred are analogous to those of ihe goto; "unnaturally complex" 

entities can be built easily by the programmer and consideration of these by the 

compiler writer defeats real gams which could be made if they were controlled. 

For the unconvinced, brief examples of problems incurred with both of the above 

types of pointers may be enlightening. Program-to-data pointers—yes, 

"variables"--incur problem«; primarily from the side effects of the assignment operator. 

When a programmer calls a subroutine (procedure) he is often unaware of global 

variables which may change as a result of the call; common subexpression optimization 

facilities in a compiler are also thwarted by this phenomenon. In effect, both the 

compiler and the programmer must assume that any global variable may have changedt. 

-'--"--•' -JWL-- MMM^kMM^^MMH 
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Scope mechanisms are inadequate here-they do not constrain the access to global 

variables effectively. (This problem is currently being studied independently as a 
"structured programming" problem [WS].) 

It is a rare programmer who has not incurred problems with data-to-data pointers- 

LISP programmers using "nconc", "replaca", and "replacd", for example, create cyclic lists' 

unintentionally. This is not to say that notions like "cycle" should be foreign to data 

structures, but rather that they should be explicit; knowledge of such structures may 

then be utilized more effectively by compilers and interpreters intended for the 
language. 

Data-to-program pointers are not as obviously misused as the olher two types 

principally because of the extremely limited capabilities generally provided for such 

pointers. Naturally, switches in Algol inherit all the problems associated with gotos 

However, it will be shown below that tr e notion of "partially instantiated function- 

actually generalizes this notion of pointer, yet retains the control required; i.e, this is a 
type Of pointer which is not complex enough. 

^ Any programming language with a reference concept is in one sense providing an 

assembly language" for data structures, without providing controlled alternatives for 

expressing sequential relationships. Indeed we lack knowledge of such alternatives 

Those languages which do attempt to control pointers usually do so using type 

structures (modes). Such facilities often prevent useful data structures from being 

def-ned (for example, rings) or permit uncontrolled, arbitrarily complex structures to be 
created. 

This should not be misconstrued as an indictment of pointers in general; no one 
would propose a gotoless language without the ability to define and reference 

parameterized subroutines by name, which indeed does constitute a use of a program 

pointer as well as data pointers. It is more the incompleteness of structuring 
mechanisms for data with respect to pointers which magnifies the problem 

tin a language without pointers, the compiler can determine information about which 

variables can change over calls. Such a determination is directly analogous to internally 

reformatting programs with gotos into the gotoless format for optimization purposes 

s 

■ — ■n       -    - -  -    
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3.    Pointerless data repreGentation 

In order to remove the ability to UM explicit pointers in programs, we consider the 

pof.siblity of '.sing the gotolecr, constructs directly; i.e., the hierarchical, nested 

sequential ("embedded lists"), static structure of programs is examined as a base for 

data structures. Indeed, such structures form the bass of data structures for se eral 

higher-level languages. The combination of sequential structures witii the gotoless 

sequencers is mdeed richer than the static structures alone. For example, a loop is a 

gotoless construct for programming languages whose analog in data structures is a 

cycle--a structure which must be simulated or constructed in languages with the same 
static structure base. 

There are several problems which data structures present beyond those 

encountered with programs themselves. In particular, a data structure frequently 

requires that different sequential structures be mapped onto the same entity; the utility 

of the concept of the "reverse" operator should illustrate this sufficiently. Also, data 

structures tend to be dynamic; for example, insertion and deletion of elements are 

operations appropriate to data structures. However, such problems with respect to 

programs do exist and are beginning to be considered in "incremental compilation" 

studies within conversational language research [MI]. 

Note also that the notion of data structure is analogous to program structure in the 

following sense: although programmers define many different programs they are all 

considered to be instances of the same program structure—usually described 

syntactically by some formalism such as BNF. It would appear that to define different 

data structures requires, in effect, a specification language like BNF in the language. 

That extensible language advocates often propose this for programming languages 

suggests that such a mechanism should probably be a shared data structure and 

program structure extensibility mechanism. It also suggests that a data structure 

facility founded purely on a single syntax for data st'uctures--as there is a single 

syntax for a programming language—must be examined critically before proceeding to 

extension mochan'ims. To emphasize, just as gotoless language enthusiasts add new 

gotolos- constructs instead of resorting to the inclusion of the goto to obtain a 

desirable effect, we prefer the definition of a new construct to provide the effect for 

which the inclusion of explicit pointers might be proposed. 

I 

Languages rarely have a sequential data structuring mechanism; sequence in 

languages like Algol is induced by the program in terms of an alternative data structure 

mechanism, the array. Although sequential operators occur in APL, their presentation is 

as   |   convenience   for   describing   and   restructuring   the   parallel   structures   which 

--—■■ --■- - 
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constitute the structure base. Languages which do offer sequences explicitly as data 

structure units are the string languages—where concepts ol sequentiality and 

relationships of sequences are constrained to a single level, or else revert to the 
pointer-chasing mechanisms of other languages, such as LISP Some of the more 

modern languages, like Pascal, while approaching adequate inclusion of controlling 

statements for data structures, continue to represent the relationship between program 

and data as controller (progtam) to controlled (data), in what follows, a much more 

unified view will be established, and, in fact, the distinctions between program and data 
become pleasantly "fuzzy". 

4.    Cosequential decomposition: program/data structure correlation 

The correlation between data structure and program control structure has been 

ignored to a large extent in programming language des gn. An example from APL may 
help t'j illustrate the notion involved.    In implementing 

A + B + C 

for conforming vectors A, B, and C m APL, a temporary vector, T, may be used in a loop 

to compute T, = B, + C,. The expression's value may be computed in a subsequent 

loop over T, = A, + T, (an implementation which closely matches the semantic 

description). However, noticing that the result sequence of the first loop is 

"cosequential" with the program sequence of the latter loop, the implementer is free to 
merge the two loops into one, in whicn T, = A, + B, + C, is computed. In essence, 

the loop is used to define a sequencer for the data structures (T, A, B and C) with which 
the sequence of executions of the loop body is cosequential. 

Although the APL programmer should be able to rely on such implementation 
efficiency [AB], he may have doubts about an expression such as: 

transpose (2, (rho A)) rho (A + B), A - B 

where loop incarnations of 

(Tu = Aj ♦ B,; T,2 = A, - B,) 

would be the desired cosequential program elements. It is not necessary to understand 
this example. The point is simply that a significantly complex APL expression may have 
a relatively simple cosequential decomposition not likely to be discovered by a compiler. 

■  ■■■ ^MaaaaBB^MBM —- - - -- ----- 
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Even if a programmer recognizes program/data cosequentiality, in traditional 

lanpuages he cannot specify the correspondence concisely. For example, many 

programs produce result (data) sequences with which they are cosequential. The 

following Algol program is such an example, producing the Fibonacci sequence in T: 

begin 

T[1]:=0;T[2]:= 1; 

for i := 3 step 1 until INFINITY 

doT[i]:=T[i-l] + T[i-2]; 
end 

Note that there is a program element (statement) execution corresponding to each value 

in the result sequence. The correspondence is not apparent—the resulting data 
structure is subordinate to the control structure of the program. 

Although the above examples tend to indicate cosequencing of a somewhat trivial 

form--with program loops—examples dealing with more complex structures are common. 

Recursive functions implementing top-down and bottom-up tree-scans generally admit 

ideniificaton of a recursive program control structure with a nested data structure (a 

1-1 sequential mapping between recursion points and tree nodes). Once again, in most 

languages, the nested data structure is subordinate to the recursive control structure; 
the sequencing for the data structure is explicit in the program statements themselves. 

The extent to which cosequential relations exist in programs and the effect on the 
programmer's conceptualizaton of them is of primary interest in the language basis 

developed below. The notions of "partially instantiated function" and "sequence 

generation" are found useful for emphasizing the cosequential relations mentioned 

above. Hence, a short discussion of each is necessary before proceeding to particulars 
of the basis. 

The "partially instantiated function" is simply a function with only part of its actual 

parameter list specified (bound). For example, if "a(i,j)" represents a function which 

returrs the jth element of the ith row of some (implicit) array, "a(,2)" may be used to 

represent the function "c2" defined by "c2(i) = a{\,2)". This ability to partially 

instantiate functions—in this case to the second column of the array—has obviou- 

consequences with resped to program generality. For example, if a function "q(x)" 

expects a vector argumen, use of "q(a(,2))" eliminates the need to reprogram q to deal 
with columns (or rows) of arrays. 
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Part,ally instant^tcd functions are called "sections" m mathematical literature [RO] 

and we adopt the term here for convergence. The nature of sect.ons i« ambiguous- 
they are both program and d.ta, and attempts to define them as one cr the other rely 

on a preconc-.Mved irnplomontation. By themselves, sections do not aid the study of 

cosequencmg; however, sequences of sections will be seen to represent a "m.ddle 

ground between data structures and program structures, and constitute a large portion 
ot cosequential result sequences in programs   1 the basis. 

5.    Implicit sequence generation 

The notion of [mptic.j "sequence generation" is also separate from cosequentiahty, 
but affects its utihty tremendously. It arises pnncpally from a des,re to express 

mfimtei- structures in programming languages as entries wh,ch can be dealt with 

operationally. For example, the Algol version of the Fibonacci sequence generation 

given above never terminates, and hence does not constitute an algorithm. 

Conceptually humans are able to cope with such a sequence; we Know that any actual 

use of the Fibonacc. sequence would require it« termination. Once agam. in traditional 
anguages. prosr(,m  generallty |5 „^ ^^ ^ ^ ^^ ^ ^^.^ of 

the loop sequence, we nust miU a separate version of the program which produces it 

Alternatives such as passing toe termination condition as an argument to ,e DrOCMfcirt 

for the Fibonacci sequence, or pulsmg a function wh,ch always produces the next 

Fibonacci element, are unacceptable-the conceptually clean notion of an infinite 

sequence is dirtied by termination mechanisms from within. We are able to write the 
function we want (as above), but cannot use it! 

e 

e 

in the basis presented bolow, the notion of implicit sequence generation permits the I 
definition   and   use   of   mfimte  sequences.    They   are   terminated  from  "without";  ie 

boundodnes: can be a property of the context of the use of a funct.on, not necessanlJ 
of   the    unction   itself.     This  ability  is  useful   from   a   practical  as  well  as  the  more 

ZuZT ^näTabove- lnp[A sequonces ,o prosrams-operat^ •*•*•« »ff .eq  ence .  mterrupt  sequences, etc., are  al, realistic  sequences which may  never  be 

iealt  with  as  sequences m programmmg languages, other  than via expl.ct  pulsing of 

he. generators.     U  will be seen that the coroutme mechanism required to implement 

mplicit  sequence generation represents the beginnings of eff.cient implementation for 
(frequently ineff.c.c-nt) algorithm decompositions prescribed by structured programming 

■'•We   do   not   distinguish   between   (conceptually)   "infinite"   and   (actually)   "^itely 

un ounde ".    When dealing with mathematical properties of programs, infinite is more ■        i 

approp'n'at: ' ^ ^ ^"^ ^^ 0f the Pr08ramS' ,he latter ^ l 

--  ■ -    -        ' ■■- -        -     J -  "-^ —L.^,-^.^—..-—^^^ ^. .„»....,   .^mj».      ^^^m.^. ..    
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studies. 

Constraints: a language "basis" 

The principal goal of this thesis is to present a programming language basis (the 

direct analogy to a linear vector space basis is intended). In essence, orthogonal 

elements of program representation are examined and mechanisms for relating them 

presented. The dimension of our space is unknown when defining elemems of 

programming. At the very least, technology will add dimensions; at most new langu^e 

designers can expect only to define a subspace of programming languages. In une 

sense, the language space is spanned by any computationally complete set of 

programning constructs. This is not of interest here. Rather, a language construct is 

independent of a set of constructs according to some intuitive or explicit measure of 
difficulty of programming without the construct. For example, recursion is a dimension 
independent of those spanning the FORTRAN syntax. 

Continuing the analogy to vector spaces, addition of a new dimension should require 

reformulation of the existing basis to insure that basis elements remain orthogonal. 

Orthogonality corresponds (again intuitively) to the optimal introduction of an 

independent element, which certainly involves maximizing the independence of the 

construct. This is in turn related to involution, conciseness and consistency. Indeed, 

many languages are designed with a formal base of primitives--USP 10 [McC], Pascal 

[WI] and Algol 68 [vW,1969] are certainly such languages. .However, once a language is 

in wide use, in order to avoid reprogramming, independent constructs must be 

reformulated in terms of the base language, instead of reviewing existing concepts in 

terms of the addition. New constructs must be "tacked on" as consistently as possible, 
and ortliogonality is rarely achieved. 

Partially to avoid this phenomenon, the basis for programming languages proposed 

below is not viewed as complete. Any reformulation of the language elements to insure 

consistency with aspects of language design is considered appropriate. Thus, the 

distinction between a "basis" and an extensible language "kernel" is intentional: 

modifications to a language based on a kernel arise through extension, not reformulation 

of the kernel itself. This concept of design methodology eliminates from the outset 

attempts to incorporate the concepts into existing languages. We reiterate: it is 

extremely difficult to continuously reformulate new bases of computation to include 

orthogonal concepts in this manner (i.e. reorienting dimensions to insure orthogonality 
is difficult). 

BMAIMMMUM 



m^mmmmwm 

INTRODUCTION AND APPROACH 18 

However, the thesis is very optimistic; for a fixed performance level, an order of 

magnitude mprovement in general purpose higher-level languages for large classes of 

problems is attainable. And this improvement will be gained in large part by 

reconsiderations of our computing basis. Arguments are presented which indicate that 

additions to and reformulations of the basis presented should accomplish this end. 

Approach: a Sequential, Applicative Language Basis 

In the discussion about sequences above, it was noted that the consequences of the 

inclusion of pointers are particularly unmanagable when combined with "assignment" to 

produce side-efects. Formal applicative languages (LISP [McC], lambda-calculus [CH]) 

do not suffer from this defect. The basis is therefore set in an applicative language 

framewo, K. The store operator has been introduced in applicative languages (e.g., as in 

Gedanken [RE,1970]) with the result that favorable properties of the applicative 

language arr los.. In a sense, side-effects ultimately appear in our langauage base ir a 
controlled manner—the assignment statement does not. 

The applicative language chosen is not conventional, but rather based on operato-s 

instead of functions. The expression is the fundamental unit of a program (it ma/ 

evaluate to a sequence), and c insists of a sequence of operators and operands, with 

left-to-right precedence in evaluation. The choice of operators over functions is 

significant from a syntactic and notational viewpoint, though both provide the temporary 

name minimization aspects requisite to notational conciseness. The language is 

typeless: types are implicit with the input format. A primitive operator definition 

facility is introduced, with scope rules unspecified. This has the effect of avoiding 

scope "tricks," or rather postponing the decision of w'iich tricks to prefer. Formal 

considerations are not of interest here, so arithmetic, re ational, and boolean operators 
are considered primitive. 

1.    Homogenous sequences 

We eliminate the ambiguities intrinsic in allowing the notation for a sequence to be 

the same for programs and data—the former often prefer the value of their last 
expression, instead of the entire computation sequence of the program as value. 

Aspects of data which differ from program sequences—including creation by algorithm, 

and insertion and deletion of elements are then considered. There is considerable 

flexibility in the basis here; the constructs are initially merely chosen to be consistent 

with the operators described below. Alternative and possibly preferable formulations 
can be made in this area. 

^ 

----- ■ —— - -   __ 
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The gotoless constructs are then introduced as operators over any type of 

sequence-program, data or a combination. These consist of selection, cond tional, loop 
and escape faclities. Careful examination has shown that two operations for combmmg 

data and program sequences, in conjunction with the above language construe, provide 

a powerful basis for computat.ons over homogenous sequences. (In a sense, only 

appl.cative languages should be compared to this basis, however, real programmmg 

anguages are compared in order to determine the directions of further extensions to 

he base as well as to examine the form of conventual structures and constructs ir 
te-ms of thi new baae.) 

The operators accompHshmg tMt power are actually quite simple, and aspects of 
them  occur  frequently m existmg languages (which is why they were chosen)     The 

coapply    operator-"."-simPly   combmes   two   sequences,   one   element   at   a"   time 

evaluating to a new sequence representing the combination.   For example, if we have a 
sequence of unary operators 

<Ul! U2; U3> 

and a sequence of arguments 

*•!! 82; a3> 
then 

<ai; 32; a3> .   <u1; U2; U3> 

is the sequence 

<•! Uli 32 U2I 33 U3>, 

where   "a.   U|-  is  evaluated  before  .^  ^     ^  ^ ^^  ^^^  ^  ^ 

repet.tion-^ui, u,; up-the more conventional concept of distributed operator should 
be recognized. 

The second operator actually embod.es the notion of sequence. It is most easily 

derived by examimng the consequences of removing the ass.gnment statement from a 

r3dit,on3l language such as Algol. Clearly, one realistic interpretation of a program is 

then the sequence of values of each expression. The more traditional meaning is the 

value of the last executed express.on. In a language without the assignment statement 

or escape facilities (return statement) this is always simply the last expression 

(preceding expressions need not be evaluated, for they can have no effect on any other 

■      -       - -■ ■ --   -    - -  -     -    —    --.-_—--    -■  — 
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expression in the same sequence). Inclusion of a return or escape operator merely 

requires that the conditional of each such operator be examined sequentially; the 

consequent of the first to escape is the only expression that requires evaluation. 

Hence, a mechanism which establishe?  a relationship between a given element and 

its predecessor must be provided.    The accumulation operator--"/"— accomplishes »his 

by producing a sequence, each element of which is a function of its predecessor. An 

initial value must be given along with the sequence of functions to be applied. For 
example, if "s" is the (left-unary) successor operator, 

0/<s;s;s> 

5 < 0 s   ,0 s) s; ((0 s) s) s> is 

■ <1; 2  1>. 

This operator s particularly related to the APL reduction operator—whose symbol it 

shares—and to the notion of regular automaton. Its name derives from the action of 
machine instructions on an accumulator, which it simulates. 

2.    Non-homogonoous sequences: the "rccursionless" constructs 

The above considerations yield a langage bas^s which is quite concise for 
homogeneous       sequential       structures. However,      algorithms       dealing       with 

non-homogeneous structures are not nearly as succinctly expressible. Traditionally 

such structures are best dealt with using recursion—either via recursive function calls 

or a recursive data structuring facility, or both. The awkwardness of recursive 

expressions using the sequential constructs leads us to the (obv ous) conclusion that 

recursion is indeed orthogonal to strict sequentiality and fundamental to the facile 
treatment of indefinitely nested sequerces. 

However, a recursive function definition facility never enters the basis (nor does 

any equivalent, such as the LISP "label" facility). Instead 'corecursive operators", 

analogous to cosequential operators ("." and " " abo^o) fc recursive structures are 

introduced. Program and data structures in v ich a one-lo-one identification can be 

made with recursion in the data structure and recursior in the program abound in 

programming. For example, the correspondence between tree nodes and recursive 
functions is quite obvious in "top-down" and "bottom-up" algorithms. 

A LISP example will help to illustrate the conceptt. The function "D" is defined 

below for a list "L". The value of the function is simply a list similar to "L" with the 
function "d" applied to each of its elements: 
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Ü[L] ■ [null[L] =-> NIL; 

T ^ const d[car[L]]; D[cdr[L]]]]. 

The nnn-trivlal conoequenl in "D" is an expression with precisely the same structure as 

"L", but with "d" applied to each element. In particular, each time "D" recurs, "L" nests 

(its "cdr" is taken). Thus, the recursive structure "L" is corecursive with the recursive 
structure of the function "D". 

The LISP example illustrates an essentially sequential algorithm which should not 

even be dealt with recursively. We develop operators which are able to deal with 

considerably more complex recursive structures. In particular, recursive analogs to the 

"." and "/" operators are developed which deal with quite general recursive evaluation 

structures. We are lead to an analogy between the "gotoless" constructs and 

"recursionless" constructs: viz., recursion is implicit in the corecursive operators. Their 

generality leads us to consider removing explict recursion from programming languages 

and defining "recursionless" languages. 

3.    Cosequertial decomposition and "coroutmolcss constructs" 

Even with the "cosequential" and "corecursive" operators, the basis is unable to 

express some algorithm:, well. We should expect algO'ithms whose conceptualization 

hinges on issues orthogona to nested-sequences to p/esent difficulties. These might, 

for example, be algorithms in which parallel structures or random access mechanisms 
are required. However, there are some algorithms which are clearly in the domain of 

"nested-sequential" algor »hms, but which simply cannot be expressed well. 

Partially as an effort to study such algorithms and partially to indicate how the 

language basis can be implemented, we relax the "cosequential" assumptions about 

programs and data and introduce "partial cor.equentiality". This ultimately leads to the 

introduction of "coroutines" into the basis. The initial cosequential operators are found 

to be easily implementable in terms of this more primitive control/selection mechanism. 

Ultimately, we recognize the true nature of the "cosequential" and "corecursive" 

operations as "coroutineless" constructs. Hence, in much the same manner as with the 

goto and recursion, the coroutine facilities ultimately defined are presented only as a 

low level mechanism to be used to define a richer set of "coroutineless" constructs. 

That  is, we advocate the removal of the explicit coroutine call at a future date, but 

tThis example is too trivial to illustrate the actual corecursive operations of the basis; 

this particular problem should never even be considered in a recursive context. In fact, 

"maplist" in LISP can be used to accomplish this effect; i.e., this trivial form of 

corecursion has been recognized in LISP. 

   • ■ 



mmmmm 

INTRODUCTION AND APPROACH 22 

present tt as a tool for studying extensions to the set of "coroutineless constructs". 

The remainder of this work deah with the material motivated in these last three 
sections in considerably greater detail. n Chapter II the initial portion of the basis 

dealing        with       strictly       sequential       effects       is       laid       out. Recursive 

considerations-'Vecursionlessness" and "corecursive operators" constitute Chapter III. 
The coroutine as the fundamental mechanism involved in the implementation of the basis 

is the subject of Chapter IV. In Chapter V, we draw conclusions about the significance 

of the reformulation of programming that the basis entails, and indicate future directions 
for its development. 

/ 
/ 
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CHAPTER II 

THE INITIAL BASIS 

Programming language design decisions are often involuted and interdependent. 

Frequently a distributed set of decisions must be made in order to satisfy a single 

language design criterion. This is particularly characteristic o' a new language basis, 

where each conventional language construct must be reexamined or reformulated. 

As was Indicated in Chapter I, the germinal decision of this work is to control 

pointers in higher-level languages by applying ihe gotoless constructs to 

"nested-sequential" structures in general. At the outset only gains in expressiveness 

were envisioned, gams analogous to those provided by the gotoless constructs in 

traditional languages. In such languages, expressiveness benefits accrue from the 

provision of a hierarchical decomposition to programs and the enlargement of the 

common vocabulary for description of control beyond the primitive state represented by 

the goto. In removing the pointer from languages, the only indication of potential gains 

in efficient implementation—a language design criterion—is that the gotoless constructs 

in languages do provide efficiency gams in the context of program control structures; 

this must be weighed against the compelling reason for the inclusion of reference 

variables in higher-level languages—namely, efficiency! 

All decisions made in the design of the basis contribute toward an enhancement of 

expression—concise representation. The decisions may be categorized as either 

fundamental or syntactic. Fundamental decisions are of particular interest and will be 

dealt with most thoroughly, particularly with regard to the design criteria of 

expressiveness and efficiency. The studies of structured programming and program 

optimization provide concrete methodologies for determining whether a decision 

satisfies these vague criteria. The nature of the language "basis" is such that 

fundamental decisions should not be altered when desig-ng a language from the basis; 

syntactic decisions may be. 

Although syntactic considerations are not considered paramoi.nt for development of 

this basis, the principle of "involution" is adhered to, and an some sense, exaggerated 

 --■ 
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by what we term "combinatorics". "Involution" refers to the internal consistency of 

lannuage primitives with respect to the ways in which they combine and admit 

substitution of other primitives. Exoression languages illustrate the principle nicely, in 

the sense that any expression in a program may be substituted syntactically for any 

other expression, with only problems of variables' scopes to be considered. Hence, if 

computation A depends on the result of a computation B, the particular form of 

computation B need not be known in an expression language to implement A. In a 

statement language, A will depend on whether the result of B is from a loop, and, hence, 

left in some temporary about which A must know, or whether it is from a function or 

expression, and can be computed directly. 

By combinatorics we mean the way in which primitives interact to form the ";iiost 

natural" result. Only recently have languages which use combinatoric notions 

extensively come to popular consideration by the language design group at large, with 

Backus' "Reduction Languages" [BA,1972] [CD] and the resurrection of Aiken's "Dynamic 

Algebra" [NO]. However, combinatoric aspects of almost any language can be discerned, 

and a few examples may aid the reader in understanding this notion (which is admittedly 

vague conceptually, though not formally). 

The LISP interpretation of non-NIL as the true condition in COND represents a 

combinatoric decision. In SNOBOL, the ease with which a variable is assigned to the 

portion of a pattern matched by an arbitrary string within the pattern may be construed 

as a decision which aids SNOBOL's combinatoric power. In Algol 60, the ability to have 

an if-thon statement is of similar utility.   In particular, in LISP, the designers predicted: 

(COND ((NONEMPTY X) El) ((NONEMPTY Y) E2) ...) 

(where NONEMPTY has the more traditional, strict T/N1L value) would be the most useful 

form for the condition, and chose to allow: 

(C0ND(X E1)(Y E2)...). 

In SNOBOL, syntax for the pattern-element by pattern-element detachment of substrings 

to obtain the matching arbitrary string is clearly less concise than that actually chosen 

to  accomplish the effect.    And obviously, the repeated use of "else dummy := 0" in 

  .            .- —,,.,, , ...          - , _ ..— 
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Algol—the alternative were there no if-then conr.truc{--is less concise and represents a 

probable frequent use of the conditional. 

To generalize, combinatonc decisions involve the elimination of some syntactic 

constructs from a preconceived model, to favor the most frequent use of that syntax. 

Hence, it is particularly related to the notion of "defaults" and tendt. to enhance 

involution. In general, combmaloric effects must be considered in the design of 

primitive constructs. The nature Df combinatoric and mvolutionary decisions is such 

that they may be described best after all constructs are known. Hence, in what follows, 

frequent reference is made to "combinatoric reasons" for the particular format of a 

primitive construct. The nature of these decisions will be presented after the entire 

basis has been elaborated. 

The basis described below is an "initial" basis, a "final" basis will be developed in 

successive chapters. The presentation is not formal, but rather emphasizes the nature 

of the decisions which produced the initial basis. As such, the description should be 

viewed more as initial considerations toward a language design, rather than as a 

language specification. 

Fundamental Decisions in the Design of the Language Basis 

The design of the basis is presented below under major headings which reflect the 

fundamental decisions involved. First, the decision to use an applicative language is 

examined. In order to establish a universe of discourse, the primitives are presented 

next, although the fundamental decisions involved here are combinatoric in nature. The 

gotolcss constructs are then considered and introduced into the basis. 

The cosequencing operators ntroduced in Chapter I are then considered, followed 

by a discussion of the notion of sequence "gene-ation". After rehashing the 

cosequencing operators in light of sequence generation, the combinatoric decisions 

involved in all of the major decisions are considered briefly. 

—      ■   ■■■--  —-^--"-—^ ■-      -         ■»--    -  -■■ -■■- 
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1.    An applicative language 

An applicative language '-amework is chosen principally for its fight control over 

pointers and related concepts. This choice is a fundamental language design decision. 

The equivalence property which makes such a language desirable from both a 

structurcc programming point of view and an implementation (optimization) viewpoint is 

simply: identical expression „ the same static context have identical values. From an 

optimization viewpoint, this permits multiply rtCUrring common subexpressions to be 

evaluated once, and for all but one instance to be replaced by a direct reference to the 
contents of a cell containing the value 

Structured programmmg ,s concerned with the control of relations which do not 

remain invariant over an expression. In particular, if we characterize the execution of a 

program by it« effect on its environment-a dynamic description of the name/value 

associations available to the program [RE,1972]-the effect of evaluating an expression 

in applicative languages is simply to extend the environment of the caller. Hence, any 

relations which fail to hold in the new environment are due solely to the "addition" of 

the new value to the old environment. The impact of applicative languages to 

structured programming hes in the localization of the dynamic effects to the 

environment of evaluating a function application. 

Naturally, applicative languages are no panacea to these two studies. It is often 

extremely difficult to optimize functions in applicative languages to a point comparable 

with corresponding algonthms for sequential languages. This difdculty arises in part 

from the complexity of "untangling" the control/data space when dealing with recursive 

structures of some complexity (see Chapter III). Additionally, even though an iterative 

algorithm may be derived from a recursive specifica'ion, a creative "leap" to a more 

efficient algorithm may be masked by the recursive structure, even though it is quite 

clear from the sequential specification (see example at the end of this chapter). 

Structured programming benefits from sequential languages to the extent that invariant 

relations may be found over environments which do change drastically. The inclusion of 

sequential constructs in the basis will permit use of positive ö-oects of both sequential 
and applicative languages. 

-- — ■ —   
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An operator version of an applicative language is chosen principally for notational 

convenience arising from both combinatoric and operand-evaluation-sequence 

considerations, which are best described after definition of the basis. The operator 

notation, which allows nullary. left-unary, rigt t-unary and binary operators, is also more 

general than a functional notation. In particular, given the ability to pass sequences as 

operands, left- and right-unary operators may be extended to pre- and post-fix 

functions, respectively, simply by providing a matching mechanism for the parameter 

sequences at the function definition site. Also, although a left-to-right expression 

parse/evaluation order is chosen, B more elaborate precedence structure may be 

applied when operator relationships are better understood. Hence, the operator 

notation is chosen initially simply because of the flexibility it admits. 

The metalinguistic operator definition notation used is as followst; 

Left-Formal     Op-Name Right-Formal :: Defming-Expresoion; 

Left-Formal    Op-Name :: Definirg-Expression; 

none Op-Name Right-Formal n Definhg-Expression; [1] 

Op-Name :: Defining-Expression; 

corresponding  to  binary, right-unary, left-unary  and  nullary  operators, respectively. 

For example, a right-unary identity function may be expressed: 

X   K,   ::   X [2] 

A binary identity function which ignores its left-operand and returns its right, is: 

x  rid  y  ::  y [3] 

The  "reserved  word-it or  "token" none resolves the ambiguity of two consecutive 
names in unary operator definitions. 

tOperator and formal names are any combination of decimal digits and upper or lower 

case alphabetic characters; sequences of special characters are also permitted as 
operator namrs (see Chapter III). 
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Use of an operator name m its defining expression does not constitute a recursive 

call, but rather refers to the previously defined operator of the same name (which this 

override s). This standard extensible language interpretation is chosen to permit 

redefinition of functions, a useful device in the prc-.entation below. Operator definition 

is initially "metalinguistic" to avoid scope considerations; an operator definition facility 

must enter the basis at a later time. 

A left-to-nght expression parse is chosen over a more elaborate precedence 

scheme as a concession to inexperience with the unusual operators of the basis. 

Although, in fact, a reasonable precedence could be proposed, its presence would cloud 

the presentation of the basis. The choice of a left-to-nght scheme over API's 

nght-to-l-ft scheme is primarily to remain consistent with the accumulate operator (see 

below), the nature of "generation" precludes its right-to-left evaluation. 

2.     Primitives 

Wo arr not overly concerned with the particular primitive operand and operator 

types of the language. However, we assume a "typeless" language (like APL) for the 

generality it provides; we may define operators which apply to different types of 

operands, depending only on primitive relations defined on the types. Hence, it is 

probably more accurate to state that the types of a language developed from this basis 

should involve sets of relations or functions defined over what are more tradit onally 

thought of as types.    For example, in a "typeless" language, the function 

min(a,b) = if a < b then a else b 

has meaning only if the relation "<" has a boolean interpretation for the pair (a,b).    This 

is the case for any combination of real and integer variables in Algol.    A typed language 

ttln a language developed from this basis, reserved words should be present in the 

initial symbol table, and the ability to override their deflation provided. This is the 

preferred extensible language interpretation [RE,1971]. 

■■  — -    —--■  - — ■ ■■- -■-—   — ^MMuaMMMH I i^^ 
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would insist that four separate functions be defined to cover all cases of this 

expression.   Subsequent definitions in terms of "min"--e.g., 

g(a,b) = ■ ♦ min(a,b) 

--also require four definitions; the loss of generality can be exponential in the number 

of distinct types. Hence, the basis is typeless. (The combinatoric implications of 

♦ ypelessness are addressed below.) 

The operand types initially present in the basis are 

Type Examples Generic-Variablest 

1.     Possibly Negative 

Integer (PNI) 1,36,-125 i.j.M.n 

2.    Character "Ä
M      '   ^V      t'llllll "a", -a", c,d 

3. Sequence 

4. String 

<el1; el2; ...; eln> 

"b+  

=< b ;   + ;       > 

s,P 

u,v 

5.     The Empty Element nil. 

We leave the description of sequence elements unspecified here, but, of course, allow 

any instance of an operand type. In particular, the ability to nest sequences is 

primitive. (The generic variable "t" will be used when dealing specifically with 

nested-sequences—see Chapter HI.) A distinct unary minus, "~", f« adopted here for a 

reason which will become apparent under the discussion of "section" below. 

tThese names will be used in examples throughout fie text. 

■ UMIIIlll ■ 
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The arithmetic opcratorr,—-t-.-.mul.div, and mod--are primitive operators with results 

of type PNI defined only on operands of type PNIt. 

The relationalG--le,ge,lt)5t,=, and ne--are defined over pairs of PNIs and over pairs 

of characters (the colatmn sequence is presently left undefined)''-. The definition of 

relationals, however, is not traditional. If "r?!" is a relational, then "a re! b" has the 

value "a" if the relation holds, nil otherw se. The important decision here is 

combinatonc in nature; it is important that one of the operands be chosen as the value 
of a true relation. 

A unique primitive operation which produces primitive operators is also permitted; 

this operation is termed "partial instantiation". The "section" or "partially instantiated 

function" was motivated in Chapter I as a natural mechanism for expressing data 

sti ucture concepts of re^.tr ction. In fact, they p'ay a much more significant role in the 

basis in that many prograns are sequences of partially instantiated functions. In 

particular, we allow the partial instantiation of any binary operator to produce either a 

left- or right-unary operator.    For example, 

x (-3) s x - 3; 

(4 mul) y s 4 mul y; 

uminus :: 0-; 

uminus 3 = (0-) 3 H (0-3) i O. 

As an aid to involution, we extend partial instantiation to include any expression missing 
an operand on the left or right: 

x (-5 mul 3) s (x -5) mul 3 

(4+(3 mul)) y = 4 + (3 mul y) 

The parenthesization of the operator expression is preserved, as indicated in the 

second example. The ability to instantiate is uniformly allowed with any binary 

operator,   including   those   defined   in   the   metalanguage.     In  general,  operators   are 

tit is convenient to have the relationals and arithmetic operators defined also on nil, but 

motivation for the particular choice must be delayed until after the "conditional 
operators" have been set forth. 

x- 
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permitted   as   sequence   elements.     (A   more   precise   formulation   of   the   rules   of 

composition and instantiation appears in Appendix I.) 

3.    Gololess constructs 

Application of the gotoless constructs to nested-sequential structures represents 

the second "fundamental decision" toward the design of the b'.sis. The particular 

constructs of interest here are: subroutine call, grouping, selection, conditionals, looping 

facilities and escape mechanisms. As has been stated previously the single property 

preserved by the gotoless constructs is program hierarchical decomposition. The 

impact of this property to structured programming and optimization studies arises from 

the ability to identify non-primitive program elements which have a single predecessor. 

From a structured programming viewpoint, properties (relations on the environment) 

preserved or destroyed over program element execution are of interest. Gotoless 

constructs allow element identification to include larger elements than single program 

statements. The gotoless constructs present a single predecessor to each program 

element other than subroutines and loop bodies. The relations considered for any 

given program element are localised to consequents of those holding after the 

predecessor's execution. The predecessor may be hierarchical, as in the case of 

selector to selection and boolean to conditional, or sequential as in the case of grouped 

elements. Loops are given hierarchical depender^y on the negation of relations implied 

by the termination condition. Hence, with the exception of the subroutine call, 

consideration of predecessor relations is a linear process in a gotoless language, 

whereas, inclusion of the goto potentially requires exponential considerations. 

Optimization considerations often center about equivalence relations preserved on 

environments; hence, any localization of the considerations of these relations aids 

efficient implementation. Any structured programming efforts which localize 

considerations of arbitrary relations on the environment will usually localize 

considerations of equivalence relations as well, and hence aid efficient implementation! 

This is borne out in Geschko's thesis on omptimization [GE]. 

The gotoless constructs enter the basis as operators. This is simply for 

consistency with the rest of the basis and has extreme combinatoric significance.    It will 
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be seen that some of the operators are more of the nature of applicative language 

"forms", in that they allow operators as operands. However, consideration of them as 

operators is useful presently. 

The first gotoless construct to be considered-selection-anses in part from an 

ambiguity introduced in allowing both programs mi data as sequences. In allowing 

programs as sequences and sequential values, we have a notational choice: we can 

distinguish between program and data sequences by distinct bracketing pairs, or not. 

We choose not to make the distinction; i.e., type sequence above may contam 

program (operator) or data elements. This allows the flexibility of operating on 

programs as we do on data, without an additional conversion mechanism. However, this 

decision immediately presents an ambiguous interpretation for a program sequence in 

light of the recent sequential language interpretation of its value as the last program 

element executed [RE.1970], [WU,197i].   For example, if 

begin tu 62; ...    ; en end 

is a compound in an Algol-like expression language, where the "e," are expressions and 

none escapes, we may choose to interpret it as representing 

«•H 62; ...; en> 

or 

(the  traditional  interpretation).    The  sequential  interpretation is chosen.     If  the  last 

value is desired, an explicit operator-val--must be applied. 

^1; e2; ...; en> val s en. 

In a sense, the val operator is the only form of selection in the basis, although only the 

last element of a sequence k ever selected by it.   Although the select operator, 

hMa^nauiA« '  
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s sub i  s s, (the  ith element of s) 

wlv M . is in the range [1, length of s] 

[4] 

H nil otherwise, 

will be used frequently, it will later be demonstrated that the operator is derivable from 

the initial basis. 

The ability to derive operators from the basis is considered important in the context 

of extensib;lity; i.e., although inclusion of a large number of primitive operations in a 

language is desirable (see Chapter I), a layf-ed description of such operations is 

considered invaluable to ut derstanding the language. Additionally, criteria for entry to 

the basis of extensible operators should be developed; in particular, sub would enter 

the basis for implementation reasons, to be described later. 

A second ambiguity arises when we consider interpretation of nested sequences in 

higher-level-languages.    Again, if 

begin ei; begin 62; 83 end; e« end 

is a compound, we can choose either of: 

<ei; 62; 63; e4> 

(the actual program interpretation sequence) or 

<ei; <e2; e3>; e4>. 

The latter is chosen to include the gotoless construct for grouping as the already 

present sequence brackets. To obtain the former interpretation, the gen operator must 

be applied to the subsequence whose elements form a continuation of the 

supersequence: 

<ei; <e2; e3> gen; e4> = <e1; 62; 63; e4>. 

 ^. 
' 
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For example, we may write a concatenate function: 

s  cone  p  :: <s  gen;  p  gen> rc1 

1   si'' s2: •■•; Sni Pi; P2; ..; pm> 

Not,ce   that  gen only  appHes  to  the sequence wh,ch i«  it.  argument, and  not  to  It. 
argument's subsequences; i.e., 

<1> cone <2; <3;4>; 5> . «1> gen; <2; <3;4>; 5> gen> 

■ <1; 2; <3;4>; 5>. 

Mote alto, if s is a sequence, 

<. gen> = s, and hence, «> gen> H <>. 

^ A third group of gotoless constructs, the conditionals, may be thought of as 

sequential booleans". In order to express the conventional if-then-else control 

construct operationally, ,hen and else operators are derived. Again for combmatonc 

reasons the LISP boolean ,S used; ,n any context where a boolean occurs, the criterion 

for valid.ty is that the result be a primitive other than nil. This ,s consistent with the 

relational operators described above. Additionally, any operation wh.ch would 

tradit.onally produce a boolean result must produce a non-empty element or nil The 

choice of this non-empty value distinguishes the conditional operator definitions: 

x else y H y when x is empty, 

= x otherwise; 

x then y s y when x is non-empty, 
s nil otherwise. 

MM. USP, no va,ue T for „ue I. p lrt of the ,a„8u,se. „ we cons,der boo|ean 

funcons over ,he so. [fruo, „HJ, whore we def.ne ".roe" as a„y „on-emp,y vaioe 
^e.g.   1) the following definitions are apparent: 
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and :: then 

or else 

However, there is no way to construct the "not" connective in this context. This is 

indicative of a failure in completener.5 of our gotoless constructs: there is no 

combination of else and then which evaluates to "y" precisely when "x" is empty in "x 

conditional y". We could include a "not" function ir, the basis as having some random 

non-empty value. However, the basis is biased towards use of non-empty results of 

conditionals as expression values, and we would most frequently use "not x then". 

Thus, the excludes operator is defined to permit this effect: 

x excludes y = y when x is empty, 

= nil, otherwise. 

With this we can complete our boolean repertoire, by defining: 

nonet not x :: x excludes true. 

(Only the conditionals else and excludes are necessary. For a more complete 

description of the somewhat strange ramifications of this logic system, see Appendix II.) 

A fourth gotoless construct is the loop; unlike other languages, a set of terminating 

facilities are not presented implicit with the looping construct. The loop operator, "*" 

(the "Kleene star"), continuously replicates its argument until terminated implicitly, or by 

using the escape operators: 

x * = <x; xj x; ...> 

In one sense, this operator is taken from data structure specification, where use of a 

pointer to implement a cycle is common. Naturally, the interpreting program normally 

must impose the interpretation as a cycle, and must terminate such an interpretation 

explicitly. For example, a function which produces alternately its left and right 

argument is: 

tSee [1] above. 
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x   alternate       :;  <x; y>  gen *; 

- <<x;y> gen; <x;y> gen; ...> 

5 <x; y; x; y; ...>. 

[6] 

The choice not to require explicit termination mechanisms was made in the hope that 

frequently the termination condition can be implicit to the usage context of the 

non-tcrmmating sequence. As discussed in Chapter I (and also below), termination of 

generated sequences is factored as not intrinsic to loops per se, but rather to 

generated sequences independent of the generating mechanism. For example, we might 

choose to define operations on a rational number representation formed by: 

u rat v :: u conc'i' (v gen *) 

£ <u gen; v gen * gQn> 

= <u gen; <v gen; v gen; ...> gen^ 

5 <Ui; U2; ...; un; Vj; ...; vm; Vj; ...; vm; ...> 

e.g., "3.7" rat "23" s "3.7232323..." 

For some operations, the decision to terminate sequences thus formed will not be based 

on properties of the repeated digits, but on precision considerations; i.e., the termination 

s not a oroperty of the loop, but rather of the context of the sequence generation. It 

s worthy of note that the same functions may then be used on sequences generated by 

rrational number generators; i.e., the complications of termination are localized to the 

use   of   the  generated sequences, not  to the various generation mechanisms for the 

sequential arguments. 

Explicit termination of sequences is accomplished with the use of the escape 

(gotoless) operators, exs and txs. The former--exs, "else exit sequence"—exits the 

innermost sequence in which it is embedded when its operand is empty; otherwise, its 

value is its argument. When the decision to exit is made, the empty element does not 

contribute to the resulting sequence; e.g.. 

tSee [5] and also Appendix III for useful functions defined in the text. 

/ 
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<U 2-2 exs; 2=3 exs; 4> ■ <1; 2 exs; nil exs; ^> 

■ <1; 2>. 

This intuitively corresponds to the "^hile-do" control construct of several higher level 
languages. 

"Then exit sequence", txs, exits the innermost sequence in which it is embedded 

when its operand is non-empty; its value is nil when its argument is nil. Unlike exs, the 

argument causing the sequence to be exited with txs is included in the result; e.g., 

<1; 2=3 txs; 2=2 txs; 4> s <1; nil txs; 2 txs; 4> 

= <]; ml; 2>. 

The intuitive correspondence with othe- IsnglMges here is with "do-untn", a traditional 

search mechanism. 

N.B. Although generation and factored termination represent a fundamental design 

decision, the explicit gains are best presented following the discussion of the 

cosequencmg operators. 

^.     Cosequencing operators 

To this point the language basis is not "computationally complete". We have no 

recursive function definition capabiliiy, and although tta loop operator, "*", is present, 

there is no way to relate successive elements of a loop. Before we introduce the 

necessary operators, notice that the basis includes: 

1. An operator language with a left-to-right expression parse; 

2. A metalinguistic operator definition notation; 

3. Primitive types: Pl\li, character, sequence, string and empty element; 

4. Primitive arithmetic and relational operators; 

5. The gen operator (form); 

6. The gotoless operators: conditionals (then, else and excludes), selection (sub 

and val), loop ("*"), and escapes (exs and txs). 

_-i-—_-_- m-mm -   -   -     - 
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Formahr-to will note an ambiguity in the interpretation of applications of "*" and gen. 

For example, although the form "+(mul 3)" is disallowed M an instance of operator 

composition, the similar form % *" is permitted (each Is a binary operator followed by a 

right-unary operator). One can either envision a set of quote rules, permitting the 

application of some operators to other operators, an elab .rate precedence formulation, 

or a notion of "form" in the lambda-calculus sense, to resolve the conflicts (see also 

Appendix I).    Presently we rely c ,    , Buid d by     e derivations presented. 

In Chapter I the coapply and accumulate operators were presented as means for 

relating programs with their arguments and results. In particular, both operators are 

forms of "apply" functions--or more accurately, "application generators"--in that they 

relate a program sequence positionally with a esult sequence. The coapply operator, 

".", additionally relates its argument sequence with its function sequence: 

6 .   q • <»| qu »2 q2; ...>. 

Generation  of  this  sequence  terminates  with the shorter sequence, iff  one  argument 
sequence terminates. 

In combination with a loop the conventional distributed operator concept is realized, 
for example: 

s .    ( + 1 *) H s .    <♦!} +1; ...> 

2 <s1 + l; S2+1; ...>. 

More exotic sequences can be expressed easily; 

s .   (♦ alternate'!- -Ms.   (<+; -> gen *) 

■ » .   <+; -; ♦; -; ...> 
5 vsi+l S2-i 53+; s«-; ...>. 

'''See [6] for definition. 



wmm*^. 

THE  INITIAL BASIS 39 

(Appendix III contains a list of till functions whose previous definition in the text are 

reused further along in the development of the basis.) The alternate "program'' may 

then be used to express more complex data sequences, for example: 

s .   (+ alternate -) ,   (1 *) 

■ <Si*li s:-l; S3+I; S4-l{ ...> 

This instance of section sequence construction illustrates a frequent use of tha coapply 

operator: to create function sequences with potentially complex components; i.e., 

propf ,•< ns. 

The coapply operator is also used for controlling sequence generation. For 

example, a function which produces a "header sequence" of q--a sequence consisting of 

initial elements of q m the same ordcr--the same length as another sequen.    3 is: 

s  controls  q ::  s  . (rid";'  •)  .  q; [7] 

£ <8j rid; ST rid; ...    ; sn rid> .    q; 

■ <&! rid qj; S2 rid q-i ...    ; sn rid qn>; 

5 <qi; q:; ...    ; qn>. 

(when n = length s Ic (length q)). 

Note that the notion of sequence involved here is somewhat trivial; the only truly 

sequentiel relationship (as opposed to positionally parallel relationship) of the function 

(program) sequencer with its data sequence concerns termination. For example, 

consider the operato-: 

s rplus p :: s .    (+ *) .    p; 

- <f-'i + Pi; S2 + P2; ...> 

"rplus" approximates the APL addition operator on two row vectors. However, there is 

a subtle difference between this operator and the corresponding APL operator. The 

implicit fmiteness of sequences p and q in APL permits "pregeneration" of p and q, and 

■i'See [3] for definition. 

  ' - ■ ..-„__^___—__ :        ._.  
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computation in parallel of pa^rwise sums, given a sufficient number of adders on the 

interpretms machine. The Oasis does not presume fimteness, and an implementation 

cannot (in general) pregenerate p and q; a sufficient number of adders cannot be 

guaranteed to exist. Thus, if we consider it a property of parallel operations that they 

terminate, the basis does not admit a parallel implementation. 

More crucial to the non-parallel implementation of the coapply operator are the 

escape facilities.   Consider the operator: 

s nonempty :: s .    (exs *); 

■ <$j exs; S2 exs; ...> s <s1; S2; ...; sn> 

where "«," are nonempty m the range [1^], and n is the length of s 0- I^J is empty. 

Here, the parallel pairwise application of the sequence 1 oents is alsu inadmissable; 

one cannot determine the operand lengths required until afU t the result is produced. 

Despite the necessarily sequential nature of the coapply operator, the nature of the 

sequentiality is trivial. No result element depends on its predecessor's value. 

Traditional sequential languages are sequential for the same reason: statement si 

modifies the environment in some Wc-y on which statement s,+1 may functionally 
depend. 

The accumulate operator, "/", introduces this dependency and represents a 

constrained form of assignment. It is defined for an arbitrary initial value, y, and a 
sequence, s: 

y / s £ <y sj; (y s^ S2; ((y Ij) If) 53; ...> 

Generation of the sequence terminates when and only when s terminates. 

One interpretation of this operator is as the execution sequ-nce of a program on a 

single-register machine (which has no store operation). The interpretation is not quite 

appropriate for the register may contain an arbitrary sequence, if desired. The 

program sequence can, however, have a complex control structure. For example, the 
Algol program: 
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begin 

real a; integer i; 

a:- 3; i := 0; 

for i := i + 1 whi'e a < 9 

do a := a * b[i]; 

if a < 13 then a := sin(z) ülse a 

end 

cos(z); 

can be represented as; 

3/ < mul * .    b .   (It 9 exs *) gen; 

(It 13 then sin else cos) z> 

= 3 / «mul bi It 9 exs; mul b2 It 9 exs;...> gen; 

(It 13 then sin else cos) z> 

■ <3 mul oj; ...   ; 3 mul bi mul ...   mul bn; 

3 mul bj mul ...    mul bn (It 13 then sin else cos) z> 

where accumulated product is less than 9. (The example is only intended to indicate 

similar complex control structures; however, the final value of the Algol variable "a" will 

be the same as the val of the latter expression above.) 

However, this neither reflects the nature of most programs written in the basis, nor 

of those written in Algol. Although the successive values of the accumulator may be 

looked upon as the access sequence for an assignable variable, this sequence is 

traditionally distributed throughout programs. Here it is not, and, indeed, a 

reorientation of programming style must occur. The access sequence and the 

controlling sequence are now equally important. 

This completes the initial basis and we are now in a position to exhibit more realistic 

functions.    For example, the positive integers, P, may be represented: 

P  ::  0/( + l*); 

= 0/<+li +1;...>; 

= <0+l; 0+1 + 1; 0+1 + 1 + 1; ...>; 

■ <li 2;3;...> 

[8] 

-— -     . ■  
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This is the first example of a useful non-termmatirj function. In particular, it is clea'ly 

beneficial to be able to express infinite sequences in programming languages. K/Umy 

mathematical formulations rely on such expressions: rational and irrational numbers, 

infinite series, etc. Obviously, from a programming standpoint, such a function can 

never be "executed" (control may not transfer to it expecting a return); in fact, it can 

never be used in its entirety. It is the ability to express non-terminating sequences 

which leads to the "generative" Implementation discussed below. In effect, each 

sequence expression is considered to be a generator, an instance of which may be 

"pulsed" to produce elements when needed. 

It   is   the   accumulate  operator  which  gives  utility  to  the escape  operators.     For 

example, the function: 

s  while  f   ::  s  .  (f  exs  *) [9] 

is trivial if s is not produced using an accumulation (or as input to the program), for no 

non-triviä relationship of the elements of s may be established without it. In 

combination with the accumulation of positive integers, we may produce the .:irst n 

positive integers: 

n   pos   ::   Pt  while  (   le  n); 

£ < 1 lo n oxs; 2 le n exs; ...    : n le n exs; 

(n+1) le n exs; ...>; 

■ <I exs; 2 exs; ...   ; n exs; nil oxs; ...>; 

£<1;2;...    ; n>. 

[10] 

It is now an easy rmtter to illustrate that sub need not be a primitive operator; the 

"head" function is defined which produces the sequence consisting of the first n 

elements of the sequence s: 

n  head s  :: n  gt 0 then (n pos controhtt s) else <> [11] 

tSee [8] for definition. 
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The sub function simply selects the last element of this sequence: 

s sub i :: i head s val. 

which will be nil when "i" exceeds the length of "s", and otherwise, the "ith" element. 

In fact, this is not an accurate representation of the sub function. The "controls" 

function as defined above presumes that the length of the controlled sequence is at 

least as long as the controlling sequence. Boundary conditions generally introduce 

complexity in programming language definitions, especially when extending languages. 

(User-defined functions need not be "general" when the particular case of interest is 

known to have certain properties.) 

In order to define a new "controls" function which behaves suitably for the sub 

function, the initial functions defined on the empty sequence are considered: 

<> val = nil; 

<> .     s 5 s .    <> 5 <>; 

y   /   <>   =   <>; 

«> Ren> s <>. 

Otherwise, the empty sequence acts as any other sequence; e.g., 

<> then 1 s 1. 

The case in point--"controli"--has an erroneous value when its boundary conditions 

are not met.    For example, 

<1; 2> controls <4> 

£ <1; i.^ .   (rid *) .   <4> 

ttSoe [7] for definition. 

■ 
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£ <1 rid; 2 rid> .    <4> 

2 <1 rid 4> 

= <4>. 

Although this may bo a reasonable interpretation for the value of "controls", alternative 

interpretations are equally reasonable. To illustrate, the value could be nil when the 

condition is not met: 

s length :: s controls-!" P't";' vai else 0; 

s control'., q :: s length It (q length) excludes (s controls'!" q). 

However, the new function precludes controlling infinite sequences. In particular, the 

length function could not now bo defined as it is above (m terms of the new "controls"). 

We can, of course, define a function which has the value "s" when its length exceeds 

a particular number: 

s controls q 

s lengthge i 

s controls q 

: s .    (rid *) .    q; 

: i post"1""'" controls s length = i then s; 

: s controls (q lengthge (s length)). 

The function will be in error when the condition is not met. 

The interpretation chosen, however, which preserves the potential unboundedness 

of "q", is to consider the controlled sequence always "infinite". In particular, the 

sequence is augmented by an infinite cycle of nils: 

"i"See [7] for definition. 

"!""l"See [8] for definition. 

tttSee [10] for definition. 

x 
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s controls q :: <-, .    (nd *) .    (q conct (ml *)). 

Thir. interpretation give«; the appropriate value for subtt as defined above. 

5.     Sequence generation 

"Sequence generation" may now bo made more precise, and the fundamental nature 

of the language design decision it represents more fully considered. No sequence is 

c^/er gcncrated--evaluated, produced--unless it i- necessary, by virtue of its 

requirement as the value rf a program, or in the computation of a value in the program. 

When produced, only the successive elements needed are generated. For example, in 

the "n pos" [10] function, neither "le n exs" nor "P" need (or could!) ever be generated 

in their entirety before the coapphcation occurs. Only the portions needed before the 

result terminates are necessarily generated. Also, this termination may not need to 
occur; in: 

<3; 25> controls (999 pos) s <l; 2> 

only two elements from "999 pos" need ever be generated. The implementation 

techniques developed by Abrarns for APL [AB]-"beatmg" and "draSging"--are essential 

to the implementation of this basis. 

The traditional notion of generator may be used to illustrate how this could be 

implemented. A generator for a sequence consists of a set of own variables unique to 

each instance of the generator, an initialization function, and a function for pulsing the 

generator. The pulsed function returns the successive elements of the sequence 

generatcd--one per pulse. The generator may, of course, run out of elements; the 

pulse function must mclicate termination, and its caller must check for the condition. 

tSee [b] for definition. 

tt$M [4] for definition. 
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Evaluation of a program in the bas,o can be though) of M a sequence of rails on 

generators. A generator for the loop operator ,s trivial, an own vanablo i« m,t,aliZed to 

the loop operand; the pulse function always returns II as its value. The coapply 

generator WtialilOl each of its constituent operand generators (preserved m own 

variables); its pulse funct.on ,s the application of the results of pulsmg its constitutent 

operand generators (after checking for termination). The accumulate venerator 

m,t,al,Zes one own vanable to the initial value of the accumulator; pulsmg consists of 

setting the accumulator own to the application of the accumulator with the result of 

pulsing its operand sequence generator (after checking for termination). 

Unfortunately, although generators are used frequently m programs, only languago« 

which mclude the more general control structure "coroutine" can be used to describe 

the generators in any clean way. The "universally understood" languages LISP 

FORTRAN, Algol, APL, and SNOBOL are poorly designed for the expression of such 

structures. Even SIMULA [DN], which allows coroutines through "activities", cannot be 

used well to describe the generators for the basis because of its type structure A 

further discussion of implementation considerations is left until Chapter IV. 

o 

The implications of generation m terms of the design cntena of naturalness and 

power revolve about the programmer's conceptual.zation of a task vs its 

implementahon. "Structured programs" have the property that they are hierarchically 

decomposable. Frequently, tins gives nse to implementations incorporating "passes- 

over the data: an entire sequence is processed by a function producing a result 

sequence, which is passed on to the next function, etc., until the output sequence is 

finally produced. The not,on of generation preserves this structured decomposmon but 

allows it to mclude unbounded input and result sequences. 

When implementing a program designed in passes over successive results the 

tendency ,s to attempt to "collapse" the passes; "single pass" compiler considerations 

have become trite. In fact, the generative mechanism, and its coroutine implementation 

are generally recognized as the efficient way to implement structured programs The' 

ortnogonality between "structured programming" and "efficient programming- is at the 

heart of the "modulanzation" problem [PA] and is partially solved by the generative 

notion mvolved in the basis. We reiterate: programs may be hierarchically structured in 

passes, but the generative mechanism requires a coroutine implementahon, automatically 
collapsing passes where possible. 
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6. Cosequencing 

The fourth fundamental decision—to include the cosequencing operators "." and 

"/"--may be viewod as a combinatoric decision. The operators do combine data and 

programs to produce new data or progi ams, and are similar to the combinators in 

Backus' Red 3 language [BA,1972]. Such operators are significant to program 

expressiveness: in ■ very real sense, programmers do identify program elements with 

data elements and build control structures around them. This activity is generally 

masked by the subordination of data sequencing facilities to control sequencing facilities 

in most programming languages. Recently developed languages such as QA4 [RU] and 

PLANNER [HE] allow some identification of program elements with data elements, but 

then "hide" the data structure in a global data base. The use of set generative features 

in languages such as SETL [SC] also represents a limited form of program/data element 

identification. The use of generators in 1PL-V [NE] permits cosequential identification; 

however, it shares the problems of LISP in that the generators have to be explicitly 

pulsed and produce results explicitly by "outputting" the generated elements. Thus, the 

cosequencing notions are at least skirted by extant languages as worthwhile 

programming features, not simply as combinatoric "tricks". The extent to which 

cosequencing operators may be developed for less homogeneous structures is the 

central subject of the remainder of this work. 

7. Combinatorics 

The decision to use combinatoric mechanisms is regarded as fundamental. Each of 

the primitive forms will ultimately influance the other's definition by how they interact 

in combination. As an example of such interaction note the effect of the decision to use 

a left-to-right evaluation sequence in combination with the accumulate operator. The 

accumulate operator must evaluate left-to-right, inasmuch as there is no rightmost 

element of an accumulation before its execution. Had we used a right-to-left evaluation 

scheme, the operation would have been entirely counterintuitive. 

Combinatoric decisions influence and motivate the definitions of the relational and 

arithmetic operators. It was mentioned above that such definitions should be extended 

to include nil in their domain. This is done simply: all operations of type arithmetic and 

relational  are nil when either argument is nil.    Additionally, it is convenient to have 
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undefined arithmetic opcratiOn5--zcro divide, overflow, underflow, etc.--produce nil as 

their value. This effectively imposes the interpretation on nil of an "undefined 

element", in the sense of "plus-or-mmus infinity". 

Wc may then write functions which can pretest their operands before applying the 

actual function.    For example, 

(n lo i go j) + 9 

will have a non-empty value iff n is in the closed interval [i,j].   Its Algol counterpart: 

if (n le i) and (n ge j) then n+9 else INFINITY 

is less concise. 

Combinations of conditionals and relationals provide further evidence of the 

conciseness gained by combmatonc devices.    For example, the "max" functicr 

i rnax j - i ge j else j 

would require an extra clause in Algol: 

max(i,j)= if i ge j then i else j. 

From a language design viewpoint, combinatorics should not be "unnatural" in the 

following sense: when there is a clear choice between two possible interpretations for a 

construct and neither is clearly more intuitively appropriate, the choice should not be 

made. For example, it may be inappropriate to define addition between characters and 

integers, for there is no obviously appropriate choice for the resjlt type. 

This precept was violated in the choice of the left operand as the value of a true 

relation. We now replace that choice with more consistent interpretation based on the 

notion of "section" and an observation about of the usage of relations. We define the 

"minor" argument of a binary operation to be its right operand. Binary operators are 

considered to be instantiated in their minor argument when they stand unparenthesized: 

J- 
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a - b = a (= b) 

We modify the interpretation of relations: 

a (rel b) s if a rel b then a else nil 

and 

(a rel) b H if a rel b then b else nil. 

With this interpretation, the range specification can be made more naturally: 

(i le) b le j 

to have the value b when in the interval [i, j]. Most expressions involving relations 

involve arguments which are ranked, in the sense that one is varying and one is 

constant. The combinaloric decision represented by the above interpretation permits 

the more constant operand to b* instantiated first as the minor operand. (Some formal 

work is required to assure the above interpretation is consistent; for example, in 

"a . (le ») . b", one must presume that the elements of "a" constitute the minor 

argument to the relational, because of the left-to-right evaluation sequence.) 

Note also that it is particularly important that no flexibility is lost by including 

combinatorically useful interpretations of primitives. If one prefers to emphasize the 

symmetry of a boolean decision, for example, he can always revert to the boolean 

interpretation, as in: 

a It b 

then a 

else b 

In one sense, combinatorics may be envisioned as maximizing the useful default 

interpretations of syntactic constructs, subject to the non-artibtrariness requirement 

mentioned above. We reiterate, the fundamental decision is to use combinatoric 

oower"—none of the particular decisions in these examples is neccessarily of global 

si '.nificance to language design. 
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Examples 

The following exampler. are presented primarily to familiarize the reader with use of 

the basis in more realistic problems than have been presented above. The examples 

evoke extensibility issues which relate to claims of conciseness for the language. 

Throughout this work, each example program characteristically includes two sets of 

functions which will be referred to as "basic" and "ad hoc". The former are those 

functions which would presumably be part of a language developed from the basis. 

Although each is expressed in terms of the basis, the function may be either' 

implemented or part of a library facility in the actual language. The "ad hoc" functions 

are very particularly related to the problem at hand, and could rarely be used 

elsewhere. Naturally, it is to the language's credit if the "ad hoc" functions for any 

particular task are few. That is, languages, once defined, are only ever rendered more 

concise through extension; hence, the ability to easily define functions for general csage 
is important. 

Complex, inconsistent libraries can arise m any language; in the basis, care must be 

exercised not to terminate sequences in an ad hoc fashion and not to take the val until 

after the sequence has been isolated as a unique function. For example, the largest 

power of "2" less than or equal to a number "n" could be written: 

Ip2le n •: 1 / (mul 2 *) whilet (le n) val 

The following factorization would be preferable, however: 

powersof i :: <1; l/(mul i *) gon>; 

poworsof2 :: powersof 2; 

powersof2le n :: powersof 2 while (le n)j 

Ip2le n :: powersof2le n val; 

for each of the components of the function is of potential utility in other contexts. 

Naturally the user must believe the original implementation will result from substitution 

rather than an actual layer of "generator calls". 

tSee [9] for definition. 
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1.  Matrix multiplication 

In   the   following,   "u"   and   V   represent   row   vectors,   "M"   and   "N",   matrices 

(sequences of row vectors).   All the functions in this example are basic: 

M column i :: M .   (sub i *); 

s <Mi sub i; M2 sub i; ...>. 

M transpose :: M column * .   Pt| 

5 < M column 1; M column 2; ...> 

u rowmul v :: u .    (mul *) .    v; 

s <ui mul vi; U2 mul V2; ...>; 

u sigma :: 0 / (+* .    u) val; 

s <0+ui; O+U1+U2; O+U1+U2+U3; ...> val; 

u ip v :: u rowmul v sigma; 

£ 0+(ui mul V1HU2 mul V2)+ ...   + (un mul vn)i 

r rM M :: r ip * .    'M transpose) 

H <r ip (M column 1); r ip (M column 2); ...> 

M MM N :: M .    (rM N *); 

£ <Mi rM N-, M2 rM N; ...> 

Although the basic functions are self explanatory, some problems are encountered 

in dealing with the potentially infinite transpose function. The transpose defined is 

appropriate for arrays with rows of unbounded length. Such an array could arise in a 

histogram for a set of system parameters in an operating system, for example, where 

termination of a row is tantamount to the system crashing, an event of finite but 

unbounded length. The transpose might then be a very useful function for a printer 

output routine. 

However, the transpose function (by itself) will never terminate: its structure is 

simply an infinite loop, and the later rows of the transpose will consist of ail nil 

elements, as "i" in "column i" exceeds the row length. Although we are dealing with the 

i,ame phenomenon as encountered in insuring that the head function could deal with an 

infinite sequence, the termination is somewhat more complex.    There are two issues 

tSee [8] for definition. 
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which complicate the function.    First, we prefer to allow the transpose of arrays with 

different si^e rows.    Second, we wish to allow empty elements in the array. 

If we allowed empty elements only as the elements generated when the row was 

exhausted, we could safely terminate the array with the following function, which simply 

tests to see if the entire row consists of nil elements: 

v notempties :: v .    (txs *) val then v; 

M transpose :: M column *.   P while notempties 

For example, if M = «3; 9>; <1>; <4; 7; 8», then 

M column * .    P 

s «3; 1; 4>; <9j nil; ?>; <nil; nil; 8>; <nil; nil; nil>; ...>. 

Also, 

<3; 1; 4> notempties 

£ <3 txs; 1 txs; 4 txs> val then <3; 1; 4> 

a <3> val then <3j 1; 4> 

5 3 then <3; 1; 4> 

5 <3; 1; 4>. 

Similarly, 

<9; nil; 7> notempties 

3 <9> val then <9; nil; 7> 

s <9; nil; 7> 

and 

<nil; nil; 8> notempties 

s <nil; nil; 8> val then <nil; nil; 8> 

5 <nil; nil; 8>. 

  .    ---   ,      _   _.   ^ 
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However, 

<nil; nil; nil> notempties 

s <nil txs; nil txs; nil txs> val then <nil; nil; nil> 

£ <nil; nil; nil> val then <nil; nil; nil> 

5 nil. 

Hence, the transpose terminates with: 

«3; 1; ^>; <9; nil; 7>; <nil; nil; 7». 

Now note that the above function works for unbounded arrays: the transpose 

tei minates iff the original array generator does, and the transpose generation proceeds 

along with (cosequentiaily with) the original array generation. However, the general 

case--permitting empty elements anywhere within the array--remains problematic. For 

example, 

«3| nil; 4>; <1>; <9; nil; 7» transpose 

s «3; 1; 9>; <nil; nil; nil>; <4; nil; 7», 

but the above function will terminate with the first element. 

Two solutions suggest themselves. The simpler is to replace nil by our own version 

of "NIL"—a token. The normal problems with finding an unique element are attendant 

with this solutiont, but it is of some pedagogic interest to illustrate how it may be 

accomplished. Assume, "NIL" is a unique element which cannot occur within the 

argument matrix.   We may replace nil in an array by NIL using: 

M fromnil :: M .   (.   (else NIL *) *). 

For example: 

tUltimately, an unbounded sequence of unique tokens in nested cc »texts is required. 
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«3; nil; 4>i <1>; <9; nil; 7» fromml 

5 «3; nil; 4>.(olse NIL *); <l>.(t.,';e NIL> *); 

<9; nil; 7> .    (else NIL *)> 

= «3 else NIL; nil else NIL; 4 else NIL>; <1 else NIL>; 

<9 else NIL; nil else NIL; 7 else NIL» 

= «3; NIL; 4>| <1>; <9; NIL; 7». 

We may then remove NIL after applying the Iranspose above, using a similar fund ion: 

M fromNIL :: M .   (.   ( ne NIL *) *), 

and can define the new transpose in terms of the old: 

M transpose :: M fromnil transpose fromNIL. 

However, finding a unique element not present in any array requires a dynamic 

unique name generation scheme which we are not prepared to deal with presently, and 

which we are never prepared to deal with efficiently. Thus, a second solution It 
proposed. 

Again, we use the transpose function which terminates with a row of empty 

elements. The method used is to simulate a "boolean array" which has nonempty 

elements wherever the transposed array has elements of any sort. This boolean mask 
array may be generated: 

M Bmask :: M .    (controlst (U) *). 

E.g., 

«3; nil; 4>; <1>; <9; nil; 7» Bmask 

= «3; nil; 4> controls (1*); <1> controls (1*); 

<9; nil; 7> controls (!*)> 

■ «1; 1; 1>; <1>; <!; 1; 1» 

tSee [7] for definition. 

•MMBa^m^MMoiM ■ 
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Applying the trancpose above to this array will then terminate after the same number 

of rows are generated as in the required transpose for "M". Hence, this can control the 
length of the actual transpose: 

M transpose :: M Bmask transpose controls (M column *.   P). 

This is the general transpose for 2-dimen5ional arrays which permits: 

1. nil '.,'lements; 

2. Rows of arbitrary lengths; 

3. Arbitrary elements; 

4. Unbounded cosequential generation of the transpose as the argument array is 
generated. 

Another negative aspect of the functions is that many are primitive in APL, and 

hence, the basis is less concise for this problem. This is to be expected throughout: 

APL will always do better when problems are formulated directly in its representation. 

On the positive side, the transpose is more general than APL's (for matrices), in the 

sense that it allows unbounded length rows in non-homogeneous arrays with possibly 
empty elements. 

Also note the ease with which the basis is extended; each of the defined functions is 

useful for a large class of problems. The same functions in Algol-like languages involve 

temporary arrays and loops, and by no means lend themselves to simple functional 
composition, as do these. 

2. Recursive programs 

Although any Turing Machine may be defined in terms of the basist, and hence, all 

recursive   functions   are   computable   using   it,  such  justification   is  not   germane   to 

•i*See Appendix V for a construction. 
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higher-levnl language design. Recursion mud be part of the basis unless suitable 

operators exist which allow a more concise specification of what would normally be 
accomplished through recursion. 

We   illustrate   conversion   of   a   particular   recursive   schema   to   the   basis,   and 
consequently to an iterative algorithm: 

f(x) = if x = k then y else up{f(down{x))1x), 

where "up" and "down" are not recursive functions. (The simple termination predicate 

i chosen to avoid clouding the primary issues involved; an arbitrary predicate and 

termination function may be substituted for {=k) and y, respectively, with only minor 

modifications to the function to be presented.) 

The essential implementation device is to compute an accumulation sequence of 

values of the function "down". In an implementation this sequence would correspond to 

the "stack". The sequence, reversed, becomes an argument to an accumulation of the 

function "up". In particular, note that computation of the stack sequence preceeds the 
computation of f: 

<down(x)i down(down{x)); down(down(down{x))); ...> 

until its last element is such that "down(lastel) = k".   Substituting: 

<•!! S2i ...    ; sn> 

for the above sequence, the sequence: 

<up(y,sn)i up(up(y,sn),5n.1); ... 

up(up(...up(y,5n),sr,.1),..),51)> 

will be computed.   The val of this sequence is the value of the funct 

Hence, we can define a stack sequence function: 

ion. 

■   __^_ 
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x computestack :: <x; x/(down *) gen> while (no k). 

The recursion sequence reverses the stack and simply accumulates the recursive result: 

x f :: y/(up * .    (x computestack reverse)) val 

where the reverse function is: 

s prefix y :: <y> cone s; 

s reverse :: <>/ (prefix * .   s) val. 

Of course, this is less concise than recursion! However, recursion is frequently a poor 

way to implement a function, as the following example will illustrate. 

To compute the exponential function "i" to the "jth" power, a recursive function (for 

constant i) is: 

f(j) ■ if j=0 then 1 else 

if odd(j) theni*f(j-l) 

else f(j/2)*f(j/2). 

We may write: 

k odd :: k mod 2 = 1; 

j down :: j odd then (j-1) else (j div 2); 

m up j :: j odd then i else m mul m. 

Substituting these functions in the above schema then gives the appropriate function in 

terms of the basis. 

Note that the recursive function may be rewritten: 

f(j) = if j=0 then 1 else 

(if odd(j) then i else 1) * f(j/2)*f(j/2) 

j 
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where "/" indicates integer division. (This ir a result of the fact that j-1 will be even 

when j is odd, and hence, that f(j/2)=f{(j-l)/2) will be computed immediately on the next 

recursive call.) 

We may now write: 

j down :: j div 2; 

m up j :: m mul m mul (j odd then i else I) 

Note that for this value of down: 

x computestack :: <x; x/(div 2 *) Ron> while (ne 0) 

is the sequence of numbers arrived at by right-shifting an accumulator initially 

containing x (j in this case) on conventional machines. (Its reverse requires coupleu 

accumulators and/or special instructions for efficient machine implementation.) The point 

is that from a canonical reformulaton of a recursive function, consideration of the 

resultant stack sequence rr?y indicate a much more efficient implementation than would 

be expected; in this case, the standard "2 log2 j" multiplications algorithm is illuminated 

[KN]t. 

The complexity of the above material perhaps indicates why "factorial" is normally 

chosen as the showcase recursive function.   If one recognizes: 

<n; n/(-l *)> while (ne 0) reverse 

as equivalent to: 

n pos 

the normal basis expression for factorial will be derived using the above schema 

substitution: 

tSee Appendix IV for a similar example (right-to-left instead of left-to-right) and its 

compilation from the basis. 

^ 

 ..-.—~~~-~~~~—~~-^~^~^~~-*-~-~~'~- —-^ ———.  
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n factorial :: J/(niul * .    (n pos)) Vci 

iCoc,;otiiinjtiün of Dccir.ions 

The fundamfnlfil decWom involved in HKI rlevelopment of the basis are: 

1. To UM an ripplicativo l«r^U430 framrwork; 

2. To apply the gotoie'S constructs to nested 'equential structures; 

3. To ucc a generative technique for the production of sequences; 

•.     To include nun-trivi.il "apply" operators as primitive--in particular, "." and "/"; 

5.    To use a syntax with hrgh combinalonc power. 

Of remaining interest regarding the first two decisions is the question of how the use of 

pointers so constrained differs from tr.ulitinnal use of reference variables and 

assignment statements. Of particular mtere.t is whether additional control constructs 

are needed to accomplish what are considered ("orrect, well-controlled notions that the 

removal of the pointer from data structures precludes. 

The decision to use a generative mechanism is based on the separate views 

programmers have of the action of algorithm-, on data structures and the way the action 

actually occurs. The generative notion is piesently quite simplistic and extremely 

constrained. What remains to be seen is iha extent to which generative aspects of 

programs may exist m the constrained environment of an applicative language. The 

implementation technique of coroutine utagG for generative programming activities is 

clearly the fundamental mechanism to be studied: how can we include the coroutine and 

how must it be constrained to fit the structured programming framework? The notion of 

factored Icrmmation is separable from that of genera.ion; one can imagine a generative 

specification of APL operations. In fact, Abram's work [AB] essentially emoloys a 

generative implementation about which efficiency considerations are more easily made. 

However, there is no way for the programmer to exploit a generative specification or 

implementation of APL, for all operations are defined over finite arrays. Additionally, 

APL's consistent extension to deal with unbounded sequences in any general way would 

be non-trival. E3y separating lenglh-controllmg facilities for sequence generation from 

their speci:ication, the issue of generation of results becomes fundamental in the 

basis--programs may be written with infinite sequences in mind. 
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Choice of the cosequential operations over a recursive generation base represents 

another major decision, largely independent of the others. The extent to which the 

cosequential application of programs to data to produce a result sequence summarizes 

operations over homogeneous sequences remains to be presented, as well as the extent 

to which "corecursive" operations over non-homogeneous nested sequential structures 

can be developed. 

The major implication of this section lies in the development of a syntax with high 

"combinatoric power", not in the particular sysntactic mechanisms used in examples. 

The combinatoric power relates to extension facilities as well as to primitive operation 

definitions. The decisions to use an operator language, a typeless language, a 

nonstandard definition of the relationals, to apply the gotoless constructs as operators, 

to rely on the "partially instantiated function", etc., all relate to concise combination of 

operators. In fact, the cosequencing operators can be looked upon as "combining 

mechanisms". In order to separate issues of syntax from semantics. Backus' work 

[BA,1972,1973] encourages us to look upon the entire activity of programming as an 

exercise in combinatorics. Although we do not ho'd this view (our operators are 

derived from machine-oriented operations). Backup work makes it clear that 

combinatoric considerations are important to language design. Insofar as possiblf;, we 

wish to avoid syntactic issues for the remainder of this work, in order to concentrate on 

the semantic issues of cosequencing and its relation to traditional data/control 

structures. 
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CHAPTER III 

RECURSION 

The initial language baoK. adequately lummwizes many sequential operations on 

data structures and the sequential creation of many honogeneous data structures. In 

this chapter, non-homogeneous program and data structures are examined in an attempt 
to describe more complex operations concisely. 

It is important to notice that the basis at this point is computationally complete, for 

the effect of a Turing Machine may be encoded easily (see Appendix V). Hence, 

hereafter, the addition of operators to the basis represents efforts to obtain "difficult" 

effects more easily. The approach is guided by common usage of traditional language 

facilities not present in the basis, m conjunction with cosequential-generation notions 

introduced previously; no attempt is made to duplicate the traditional facilities 
themselves. 

The primitives added hereafter must be considered even more tentative than those 

in the initial basis, for more complex entitites are considered and 

combinatonc/involutional problems expand exponentially. Additionally, issues 

orthogonal to sequential considerations—viz. association mechanisms, atomic 

representation issues, types, etc.--complicate on the more realistic problems arising 

from non-homogenoous sequences. However, the extent to which they are bothersome 

is reduced by careful selection of examples for presentation; i.e., the reader is led down 
a "primrose path" in order to amplify the relevant issues. 

We wish to deal with a broader class of nested-sequential structures than can be 

handled easily with the initial basis. In particular, in the initial basis sequences 

consisting of elements which may be cither sequences or primitives (non-homogeneous 

sequences) must be dealt with via explicit "pulsing" of the data structures by the 

program. The use of "car" and "cdr" in LISP constitute "pulsing" a list—see Chapter I, 

for example. Analogous functions must be defined to deal with recursive structures in 

the language basis (see Appendix VII for an example). If is exactly this pulsing which is 

is eliminated for sequential structures by the cosequencing operators, and so we look 

for cosequential recursive ("corecursive") operators to deal with non-homogeneous 
sequences. 

The task of compiler construction is considered as a motivation for corecursive 

operations.    A fairly standard breakdown of this task consists of functions—"lexemes, 
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syntax, code, output"--which, when applied successively to the input sequence produce 
the translated program, viz. 

inputseq lexemes syntax code output = compiled program. 

Commo. ,y, the  above  program  would be called a four  pass compiler—one  pass  per 
function applied to the arguments 

The implementation of a compiler as a single pass over the input data is of frequent 

concern to compiler writers. In such an endeavor, the breakdown above is retained, 

but the functions are executed "cosequentially". In particular, assume "syntax" creates 

a parse "tree" (in terms of "atoms" from the function "lexemes"), and "code" 

(optimization) proceeds by considering successive "syntactic handles" of the tree [FG]. 

The program starts by attempting to "output" code. Initially, no code has been 

produced, so "output" pulses "code" until it produces enough of a free--a statement, for 

example--for which "output" can output code. Naturally, "code" has no input initially so 

it calls "syntax" until it can produce enough handles for code to optimize. This process 

continues until enough of the input sequence is read to produce enough lexemes that 

"syntax" can generate enough tree for "code" to proceed with satisfying "output". The 

process then cycles. That this process is "cosequential" is clear; however, the 

structures with which we are dealing--trees—cannot be handled well with the primitives 

from the initial basis.    In what follows we shall exhibit cosequential operators for trees. 

Recursion 

In order to study recursive program and data -.tructures, a recursive definition 
ability is added to the basis (temporarily). The gains represented by the cosequencing 

operates of the initial basis are then considered briefly in terms of a recursive 

formulation of these operators. It will be shown that the notions of cosequencing, 
unbounded generation and factored termination affect such a formulation. 

Although it would be possible to extend these notions to recursion—and include the 

recursive definition capability permanently—we choose to limit the recursive structures 

definable within the basis. This limitation parallels the way the gotoless constructs limit 

the sequential structures definable in programming languages that lack the goto.    Hence, 

tHistorically, the notion of "pass" referred to the number of times the program had to 

be read by the compiler until ultimately enough information was available to compile it. 

Present day (large memory) machines have modified this to the number of complete 

scans of intermediate representations the program undergoes during the compilation. 
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the   existence   of    "recurcionlesr."   constructs,   analogous   to   gotoless   constructs,   is 

postulated and studied in detail below. 

We choose to (temporarily) install the recursive definition ability via introduction of 

a   quote  operator,   , which  precludes operator  body  variable  binding  at  operation 

definition time.    For example, 

x   f   ::  x 1   else (x-1   "f  mul x) Ul 

then represents the factorial function expreoed recursively (divergent for 0). Note that 
it "f" were not quoted in the body, whatever previous definition of "f" exists would be 

the appropriate reference. (Quoted names have the "normal" LISP binding, names which 

are not quoted have the "FUNARG" [McC,1965] or Algol binding.) 

To illustrate recursive definitions of "." and "/" we need two primitive functions, 

"1st" and "tail", analogous to the LISP functions "car" and "cdr", respectively, when 

applied to lists. 

x id :: x; 
x null :: <> gen; 

list 1st :: list .    <id> val; 

list tail :: list .    <null; id * gen>; 

Given these two functions as primitive, we can describe "." and "/" (used as names 

below) recursively: 

s   .  q   ::  <s   1st   (q   1st);  s   fail  *.  (q  tail) ger,>; [2] 

v / s :: <v (s 1st); v (s ht) 7 (• tail) gen> 

This implementaion is inadequate in that no termination conditions are present. With an 

additional primitive, "isemptyseq", the functions could terminate when "s" or "q" is 
empty. By providing a mechanism for dealing with "quoted programs" (a desirable 

provision) we could terminate contingent on escape function values. However, this 

would still be inadequate, for unbounded sequences such as "+*.P" would never 

terminate. 

Providing a truly adequate evaluation mechanism is tantamount to implementing the 

basis (considered in Chapter IV and Appendix IV). Essentially, a recursive coroutine 

simulation is required; more arguments ar? required to each function call of "." and "I". 

MriüMHHMMflM 
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Hence, a recursive implementation requires a significant amount of detail to simulate "." 

and "/", and is less "natural" than the basis for modelling cosequential activity. 

As we mentioned above, the ideas of cosequentiality and unbounded generation can 

be extended directly to recursive functions such as [2]; we do so in a more constrained 

manner below. The above discussion simply points out that it is no easier to implement 

the cosequencing operators in the framework of a recursive language than in the 

framework of a sequential language. 

Notice, also, the use of "1st" and "fail" constitutes explicit "pulsing" of a data 

structure by a program structure. For some programs in the basis, this explicit pulsing 

is eliminated by the "." and "/" operators. Programs written in the basis in which 

pulsing is required may be characterized as either "recursive" Or "codependent" (or 

both). Two structures are "codependent" if they depend on each other functionally but 

neither can be classified as functionally superior in importance. An "inventory file" and 

a "manufacturing order file" exhibit signs of codependence. The necessity for such 

structures arises when a function in an applicative language has no "clean" functional 

decomposition.   Such structures are considered in Chapter IV. 

Recursive structures are characterized by potentially infinite nesting, as well as 

some degree of "branchiness" (see "essential recursion" below). This infinite nesting 

could arise either from (traditional) explicit recursive use of finite operators or from use 

of potentially infinitely recursive operators analogous to "." and "/". The simple 

extension described above handles the first case. For the second case, we will define 

recursive analogs of "." and "/". These will have the properties of the corresponding 

operators in the initial basis, permitting: 

1. Unbounded cosequencing, and hence, 

2. Factored and implicit termination, and 

3. Factored data/program representation (non-pulsed data structures). 

This chapter represents a search for recursive operations which are amenable to 

the ideas of cosequentiality, unbounded generation and factored termination introduced 

in the initial basis. In one sense, such a search is premature: the initial basis relies 

heavily on the ability of the gotoless constructs to adequately summarize sequential 

activity of programs. This point of departure is significantly more advanced than that 

for recursion. We do not possess a set of "recursionless constructs" which adequately 

cover recursive program activity in the same sense as the gotoless constructs cover 

sequential program activity. 

/ 

  ._. 
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Intellectually, this parallel between the goto and the recursive call is very 

appealmg-multiply nested mutually recursive functions are easily as complex as 

programs with "rats' nests" of goto statementst. Ideally, the definition of a set of 

recursionless constructs wou'd lead to the elimination of a recursive function definition 
facility in programming languages. Naturally, this elimination would complete the 

removal of complex program-to-program pointers from programs, relegating function 

call to a substitution process (which is is already required of any practical 
implementation of the initial basis). 

_ Thus, m what follows, we are faced with two separate issues: defining 
recursionless" constructs and understanding the relationship of of the concepts of the 

initial basis to these constructs. Unfortunately, our results m this area are only 

suggestive"-we cannot propre a set of recursive operators which cover well all 
instances of recursion (again, in the same sense as gotoless constructs cover well all 
instances of sequentiality). It is not surprising that our results in this area are 

incomplete, in view of the history of the development of the gotoless constructs, the 
difficulty of expressing their operators in the basis, the constraints imposed by 

requiring that they apply to data structures as well as program structures, and the 

unbounded generation notions. However, we do feel that a search tor "recursionless" 

constructs is a fruitful area for future research, and attempt to indicate an approach to 
this problem in the following pages. 

Sequential Functions on Recursive Structures 

Two very common types of recursive algorithm are considered in initial attempts to 
define recursionless constructs for the evaluation of functions on recursive structures- 

top down" and "bottom up". From the recursionless constructs which arise from these 
considerations, operators are derived for inclusion in the basis. The operators so 

derived, although arising from q^te specific recursive algorithm types, are extremely 

general when used in combination. Hence, at the end of this section they are related to 
some very general recursive forms. 

1.    Top down recursionless construct 

Although "top down algorithms" are very common, languages dc not generally 

contain constructs which permit their concise specification or explicit identification as 

such. When one refers to a "top down" evaluation procedure defined on a tree 

(arbitrarily nested sequence, in this context), some function is applied to the root node 

tArbitrarily  complex  programs  using  gotos  may be simulated with  procedure    calls 
[vW,1966]. 
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before any function is applied to its subnodes.    This may be expressed recursively m % 

the bas's as: 

t   topciown  ;:  t   fd  . ('topdown  *) [3] 

whc re "td" is the top down function applied.    For example, if 

t td :: <t  1st; t val> 

then the tree argument ("t") is simply trimmed by the top down function: 

«l;?i3>; 4; <5;6» topdown 

s «1;2;3>; 4l <5f6» td .    C'topdown *) 

5 «1;2;3>; <5;6» .    (topdown *) 

a «1;2;3> topdown; <5;6> topdOwn> 
5 «1;2;3> td .    (topdswn *); <5;6 ■ td .   (topdown *)> 

■ «i|3* .    (topdown *); <5;6> .    (topaown *)> 

This example will not terminate (ex'    )t ptrhaps from an error of attempting to coapply 

an integer to a sequence). 

Hence, some termmat-n predic '? ("tp") is used to decide whether to continue the 

recursive algorithm, and a termination function ("tf") is applied when the recursion halts 

along any path in the structure; i.e.. 

x   topdown  :: x  tp then (x  tf) else (x  td . ('topdown *)) [4] 

Of course, this is a very simplified version of a topdown algorithm, for there may be 

multiple arguments, mutually recursive topdown functions, etc., and, in fact, normally 

some information is passed down as recui "ion occurs. The<^ will be considered in some 

detail later in this section. However, HM relationship of the recursive control to the 

invoked function is captured by this formulation. 

Normally, the notion of a "top down" algorithm implies that the result of the top 

down function itself is related to the Original node; i.e., "td" acts as a selector of a 

sequence   of   subnodes.     By  not   insisting  on  the  selector  relationship,  the   functions 

tAI this point we may drop the quote (","), for the function "topdown" (in this case) is 

now defined. 

■ — 



^51»« 

RECURSION 67 

above {[3] and [4]) are, in fact, too general to represent top down functions constrained 

to trees, ^his generality is convenient, for it provides a broader notion of top down 

algorithm which is constrained not to trees, but rather to a control structure which is a 

tree. This models the intuitive notion of top down algorithm very precisely. If this 

tree-like control strucure arises from application of a top down algorithm to a free, the 

nodes of the control structure will correspond to the nodes of the argument tree. A 
notion of "corecursion" is emerging. 

Despite the objections to the form [4], we can attempt to define a recursionless 

construct for an Algol-like, higher-level language.   Its syntax might appear thus: 

<recursionless construct   ;:■ 
topdown <control vflriable><-<initial value> 
termination specitication> 
do <top down function body>; 

[5] 

termination specification> ::= termination part> application part> 

«termination part> ::= ■'empty> 

/ until <termmation predicate> 

/ while <termination predicate> 

application part> ::= <;empty> 

/ whence <termination function> 

where the correspondences; "fp" with termination predicate^ "tf" with termination 

function>, "td" with <top down function body>, are only approximate. (Empty 

alternatives for the termination part> are to permit a default interpretation for these 
constructs.) 

Although semant,.3 of such a construct would be very language dependent, the 

construct itself is to be included in an expression language, and the language must be 

equipped to deal with lists. Then the value of the <top down function body> must be a 

list. Recursion will occur on each element of the list produced by the <top down 

function body>. (These elements are normally themselves lists.) The control variable 

takes on the value of the current subnode at any point in the recursion, and the 

variable is available for reference in the various parts of the construct. Before 

recursion occurs on any node in the structure, the termination predicate is tested. 

When satisfied, the action of the termination function takes place; otherwise, recursion 

occurs. For example, a function which adds "3" to the terminal nodes of a tree, "T", 
might be written; 
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topdown  t<-T  until  atom(t) whonco  t*-t+3  do  t; [6] 

A more complex function, which does ti e same only to nodes arising from the first and 

third branches from each node, could be written: 

topdown t<-T until  atom(t) whence t<-t+3 

do concatenate (t[l],t[3]). 
[7] 

The nature of the created value would be particularly language dependent--i.e. the 

construct might be modifying a recursive data structure as intended in [6] and [7], or it 

might be creating a new one. Several constructs may be necessary to cover these 
interpretations. 

At this point we have a recursionless construct; before proceeding to the 

development of others we consider the problems involved in putting such a construct 

into the basis. Clearly, we would not include it directly, but would rather reformulate it 

as separate operators dealing with the various portions of this somewhat 
command-oriented syntactic construct. 

In order to do so, we examine the loop construct of Algol-like languages and note 

the  aipect,  which allowed its factorization and subsequent inclusion in the basis.    A 

raditional predicate based construct, the for statement, consists principally of: 

for <variable>'-<exp> [until/while] termination predicaie> 
do <loop body>. 

This construct takes on several different forms in the basis depending on whether the 

variable is used to count, accumulate, or index, but invariably the termination predicate 

is separate from the loop in another (cosequential) loop in which one of the escape 

operaicrs is used, or else the termination is implicit. 

Naturally, we would like to retain the separation of termination from a recursive top 

down operator. For the moment, we ignore the various relations of coitrol variable to 

top down functiont. We can then consider including a top down operator in the basis, 
"i", which will accomplish the top down recursion between a tree "t" and right-unary 
function, "td"; 

t   I   td   ::   t   td  .  {'i  td  *) [8] 

A natural  implicit termination condition is that recursion has reached a primitive node 
(integer, character, etc.). 

/ 
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However, we are then left with the problem of the termination functions If we 
default this to the identity function ^agam temporarily), we can then write some 

reasonable top down functions. For example, using the "tail" function defined above, 
we have: 

<1; <3;5i7>i 9> 1 tail 

=  <1; <3;5;7>i 9> tail . (i tail*) 

= «3;5;7>; 9> .   U tail *) 

= «3;5;7> i tail; 9 i tail> 

= «3;5;7> tail .   (i tail *); 9> 

= «5;7> .    (i tail *); 9> 

s «5 1 tail; 7 i tail>; 9> 
= «5;7>; 9> 

which is the tree with all initial sub-nodes removed. 

A more complex function which selects only the odd sub-nodes at each node is: 

t oddsn :: t I (.(<idi null> gen *)) 

For example, 

<1;<2>; <3i 4; 5>; 6; <7» oddsn 

= <1; <2>; <3;4;5>; 6; <7» .    <id; null; id; null...>.   (oddsn*) 
= <1; <3;4;5>; <7» .    (oddsn*) 

= <1 oddsn; <3; 4; 5> oddsn; <7> oddsn> 

■ <ij <3;4;5>.<id; null; id; ...>.(oddsn *); 
<7>.<id; null...> (oddsn *)> 

s<l;<3;5>.   (oddsn *); <7> .   (oddsn *)> 

= <1; <3 oddsn; 5 oddsn>; <7 oddsn» 
■ <ll <3;5>; <7» 

[9] 

tThroughout this section, the top down operator is generalized (through redefinition) to 

enable effects which would be obtained through the use of a control variable. Do not 

be misled by the constrained nature of the first few definitions of the top down 
operator. 
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Hence, we have a viable implicit termination mechamom. The problem of application 

of the termination function (the "whence" clause in [5]) can be surmounted to some 
extent by the introduction into the basis of primitive predicates: 

x atom? s x if x is atomic (primitive), nil otherwise; 

x seq? H x if x is a sequence, nil otherwise. 

If it is desired to apply f jnction "tf" to the implicitly terminal nodes, we can rewrite the 

top down function to do this. For example, in the tree with initial nodes removed [9], if 
it is desirable to add one to the terminal nodes, we may write: 

x auxf :: x atom? +1 else x 

Then, 

<1; <3;5;7>i  9> i (tail . (auxf *)) [10] 

H <1; <3;5;7>; 9> tail.   (auxf*).   (1 (tail .   (auxf*))*) 
= «3;5;7>; 9> .   (auxf *) .   (1 (tan      (auxf *)) *) 

= «3;5;7> auxf; 9 auxf> .   (i (tail .   (auxf *)) *) 

= «3;5;7>; 10> .    (i (tail .   (auxf *)) *) 

5 «3;5;7> ( (tail .   (auxf *)); 10 1 (tail .   (auxf *))> 

= «3;5;7> tail .   (auxf *) .   (i (tail .   (auxf *)) *); 10> 

s «5;7> .    (auxf*).   (I (tail,   (auxf *))*); 10> 

s «5 auxf; 7 auxf> .   (1 (tail .   (auxf *))*); 10> 
= «6;8> .    (J. (tail .   (auxf *)) *); 10> 

= «6 | (tail .   (auxf *)); 8 1 (tail .   (auxf *))>; 10> 
= «6;8>; 10> 

However, this skirts the termination function issue to a large extent. Both the 

termination predicate and the termination function are troublesome. In the following 

section we generalize the top down function somewhat, and approach the problem of 

termination in greater detail, for the issues involved have analogs in the initial basis and 
are related to the coroutine notions of Chapter IV. 

2.     Top down reexamined 

We may summarize the problems with our attempts to express the top down 
mechanism of the preceding section as operators in the basis: 

--■■--   ■■ ■-- 
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1. Termination is necessarily implicit; 
2. The termination function had to be applied from within the top down function 

itself; 
3. The termination function could not itself produce a sequence—otherwise, the 

top down mechanism would have continued to be invoked. 

Additional problems remain, related principally to the <variable> portion of the 

recursionless construct specification. In the gotoless loop constructs, several 

constructs were required to replace the control variable—the use of "." and "/" as well 

as some functional tricks frequently applied to the positive integers, "P". These 

problems occur within top down control, also, although they may be subverted through 

encoding tricks to a large extent. 

To illustrate, a top down func' on, "f", which replaces each terminal node ("n") of a 
tree "t" w th the length of the longest sequence of which "n" is a subsequence is 

programmed below-'": 

i max j :: i gt j else j; 
i merge s :: s seq? then <i; s gen> else i; 
t tdf :: t length - 1 max (t 1st) merge * .   (t tail); 

t f :: <0; t gen> i tdf 

Clearly, the recursive implementation is more concise and intuitive: 

t  aux  len  ::  t   atom? then len 
else (t .   ('aux (t length max len) *)); 

t f :: t aux 0 

[11] 

The failing Is a natural one common to r ^cursive functions restricted to a single 

argument—secondary arguments must be encoded. In the material below, top down 

functions for more than one argument are developed. Also, some of the objections to 

the previous top down function are removed. 

tThat is, with the degree of the node of highest degree on the path from the root to 

"n". 

(   i 



mmrm 

RECURSION 72 

Presently, a top down function is developed which represents a recursive function 

defined on a single argument but which is a simple extension to the previous top down 

function and which permits some multiple argument recursion effects quite easily. It 

essentially involves the notion that recursive control can be imposed on a sequence of 

functions instead of a single function, "td" A vertical relationship between the nodes of 

a tree and the elements of the program sequence is established; viz. 

Tree Program 

In particular, the top down function above [8] is redefined as: 

t  i  fs  :: t  (fs   1st) . H (fs tail) *) [12] 

Recursion terminates when the function sequence terminates or when t is atomic. The 

ability to terminate the sequence of sections ("partially instantiated functions") permits 

termination prior to the ad hoc nodes of the tree. Also, the depthwise orientation of 

the function sequence application allows some effects that would require either multiple 

arguments to the recursive function or mutually recursive functions. The former effect 

is illustrated telow by a function which trims its argument tree by going no deeper than 
"n" levels, replacing the nodes at level "n+1" by the number ^10000: 

x lid y :: x; 

x rid y :: y; 

t depth n :: t i <lid * .    (n pos) gen; rid 40000> 

For example, 

<1; <2; <3;4>; 5>; 6> depth 2 

= <1; <2; <3;4>; 5>; 5> I <lid * .   <1;2> gen; rid 40000> 

= <1; <2; <3;4>; 5>; 6> 1 <lid 1; lid 2; rid 40000> 

= <1; <2; <3;4>; 5>; 6> (lid 1) .   (i <lid 2; rid 40000> *) 

■ <l 4 <lid 2; rid 40000>; <2;<3;4>;5> i -,id 2; rid 40000; 
6 i <lid 2; rid 40000» 

s <1; <2;<3;4>;5> (lid 2).(i <rid 40000> *); 6> 

s <1; <2 i <rid 40000>; <3;4> i <rid 4000>; 5 i <rid 40000»; 6> 

 - — - .   ... - ..-   .   . 
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<1; <2; <3;4> rid 40000; 5>i 6> 

<1; <2; 40000; 5>i6> 

The recursive function which it replaces requires either two arguments (for fixed 
"n"), or use of the messy encoding scheme presented above in [11]: 

t auxf d :: d gt n then 40000 

else (t atom? else (t .   ('auxf (d+1)»))); 
t depth :: t auxf 1 

Hence, a very simple aspect uf multiple argument recursive functions is captured by the 
(final) reformulated top down function [12]. 

A more important aspect of recursive functions permitted by the 

sequential/recursive top down function is the ability to define mutually recursive 

functions by alternating the operators applied in the top down sequence. For example, 

when dealing with "and/or" freest, it is normally the case that different types of nodes 

are treated differently. Given such a tree, "aot" ("or" node at root), we can program a 

function which selects t> first alternative consistently (at each "or" node) as: 

aot basetree ;: aot i (<lst; id> j;en *) 

A canonical recursive formulation would be best written using mutually recursive 
functions: 

aot and :: aot atom? else (aot .   ('or *)); 

aot or :: aot atom? else (aot 1st and); 

basetree :: or 

Inasmuchas "td" is a sequence, we can consider the effect of allowing escape 

functions in the sequence. Although several choices for the meaning of an escape are 

possible (terminate recursion, terminate use of any successive elements of the function 

sequence throughout the remainder of the tree) the most reasonable seems to be to 

terminate the sequence along the current path only.   That is, recursion is terminated for 

tAnd/or trees are frequently used in game-playing applications, syntax tree 

representations, theorem proving systems, etc., [NI] where problems can be formulated 

on the mutu'al occurrence (and) of choices from a set of alternatives (or). 
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the particular node m quPition, but for no others.    For example, the function "trim" in: 

s L p :: s length p then s; 
t trim n :: t i (L (le n) exs f *) 

would apply "f" to each subtree until it reaches subtrees whose length (i.e.    "order" or 
"node size") exceeds "n". 

The value nt the terminated node can be defined as the node which caused the 

escape in the case of exs and the function value (operand) of txs. Thus, the above 

example terminates recursion with the nodes whose length exceeds "n". The original 

recursionless construct [5] should probably not be extended to approximate the 

embellished top down operator, unless an analog were introduced for loops. In 

particular, one could imagine the do loop consisting of a sequence of loop bodies, 

successive elements of which are used as the loop is pulsed. Although the possibility 

should not be ruled out, such a construct seems a rather unlikely candidate for inclusion 
in most languages. 

At this point there are three problems with the top down operator: 

1. The terminal function (If" m [4]) must be applied by top down in an awkward 
manner (see example [10]); 

2. Binary argument recursion requires encoding techniques (see example [11]); 

3. We have not achieved a separation of termination from top down generation, 

and, in fact, are unable to terminate well other than with atomic nodes-- i.e. 
implicitly. 

Presently, we discuss two more top down operators which alleviate problems 1 and 2, 

which further develop the notions of cosequential/recursive generation, and which 

relate very directly to the initial basis. Their development helps to illuminate the third 
problem. 

3.    Top down coapplication 

To reiterate, the definition of the top down operator with termination condit 

t -L td :: td emptyseq then t else 

(t atom? else (t (td 1st) atom"') 

else (t (td 1st) .   (U (to tail) * ))) 

ions is: 
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In particular, we never recur on atomic nodes. This has the beneficial effect of not 

requiring the top down functions to be defined on both sequential and atomic 

arguments. However, it requires the messy implementation of [10] whenever we want 

to recur on atomic nodes or when we simply wish to apply a terminal function "tf", to 
the atomic nodes. 

Notice   that   if  we  rewrite  the  top down  form as    hough there  were  no  implicit 

termination (other than not to recur on atoms produced by the "td" functions) we have: 

t -I td :; t tp then (t tf) 

else (t (td Ist) atom') 

else (t (td 1st).   H (td tail) * )) 

If "td" sequences are defaulted to the identity sequence, "id *", we have simply: 

t i<id«)a1 tp then(t tf) 

else (t .   Cl (id •) *)) 

We could then consider merging the termination predicate and function, which seems 

quite consistent with the combinatonc nature of the basis-i.e., we could define an 
operator: 

t ! tf :: t tf else (t .    ('! tf *)) 

This would terminate recursion when "tf" returned a non-empty value, with that value. 

Otherwise, recursion would proceed on each eltment of the argument sequence, "t". 

However, this eliminates nil terminal nodes and propagates the problem we are trying to 

eliminate: the "tf" function must then be defined on both sequences and atoms. Hence, 

an alternative formulation, applying the function "tf" only when the node is atomic may 
be considered: 

t ! tf :: t atom? then (t tf) 

else (t .   ('! tf *)) 

This do-!s permit terminal function application to atomic nodes, which is one problem we 
intendeo to solve.    In particular, example [10] may be rewritten: 

t I (tail *) !( + !) 

-— --   ■ -  
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The extension of the above operator to allow a sequence of terminal functions as 

the right argument is consistent with "1", and provides the same multiple 

■argument/mutual recursion capabilities as it does in the original top down function. 
Hence, the top down "coapplication operator", "!", is defined: 

t   !   tf   :;   tf   emptyseq  then t  eise 

(t atom'' then (t (tf 1st))) 

else (t .   nuftail)*)) 

[13] 

(Throughout this chapter, the use of nil as an element is restricted because we are 

using tne language itself to fescribt the effects we want m the language. Presumably 
an implementation would be more careful about such a restriction.) 

For example, if we wish to replace all terminal nodes with their depths in the tree, 
we may writ',1: 

t ! (rid * .    P) 

and, hence, 

<1; <3;7>; 9> ! (rid » .    P) 

■ <1 rid 1; <3;7.> ! <rid 2; rid 3; ...>; 9 rid 1> 
s <1; <3 rid 2; 7 rid 2>\ 1> 
■ <1; <2;2>; |> 

The potation T arises from the correspondence between this function and a 
"vertical" coapply operator; the cosequential correspjndence between the depth of the 
argument tree and the section's index in th« "tf" sequence is apparent. 

4.     Top down accumulation 

The second problem we wish to solve is that of binary argument recursive 
functions. We do not solve it entirely here, but develop the top down accumulation 

operator, "V", to relate one aspect of the multiple argument recursive function to the 
rest of the basis. 

Frequently, top down functions act as accumulations, with the accumulation sequence 
branching recursively to the subnodes. For example, the function [11] (rewritten here 

as [14]) defines a tree, each terminal node of which is the length of the maximal 
sequence (node size) of which it is a subnode in tree "t": 

- —_______^—_—.— .   . . . . 
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t   f   maxel   :: t  atom? then maxel else 

t .   ff (t length max maxel)*); 

t maxltree :: t f 0 

[14] 

The  accumulated value is the maximum of the length and the accumulator--"maxel" in 
this case. 

Notice that this effect cannot be obtained using the final top down function [12], for 
Mie right argument passed ("maxel") depends on both "t" and "maxel". In addition, the 

topdown recursionless construct above [5] does not pei nil a multiple variable 

capability. Before introducing an operator into the basis to accomplish this effect, we 

can consider extending [5] to obtain the effect in the traditional language 

"recursionless" cnstruct, An effective, simple method for allowing it would be to let 

local variables -'efined in the <top down function body> be propagated in the recursion. 

Initial values would have to be set in the declaration and the value retained when 

recurring.    The above function could be written: 

topdown T«-t until atom(T) whence maxel 

do begin 

integer maxel ■ 0; 

maxel *- max (length(T), maxel); 

T 

end. 

Naturally,   this   mechanism  would  also  be  very  language  dependent,  and   a  separate 
phrase may be preferred for the accumulator specification and subsequent value. 

The operator we are about to develop for obtaining this effect is related to the way 

multiple variables are handled in the initial basis with iterations. In particular, in the 
initial basis a form of accumulation which occurs frequently is: 

iv / (fs .    s) 

It  occurs  so frequently that it  is reasonable to attempt to make an operator which 

depsnds only on "fs" and "s" which acodmplishes the effect; e.g., 

fs reduce s :: fs functionzero / (fs .   sV 

where the initial value depends on the function itself.   Another possibility is to simply 

write the function and have its value be a section: 

' / 
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fs reduce s :: / (fs .    s) 

Yet  another  is to insist that the function sequence have the initial value as its first 
element: 

fs reduce s :: fs 1st / (fs tail .   s) 

Any of these operators could enter the t^sis, or could perhaps replace the 
acLumulation operator of the basis. The top down accumulation operator is an analog 
of the last choice: 

t V td :: t atom? else (td .   <id;id> length = 1) 

then(td Ist) 

else (t .   TV <t (td 2nd) (td Ist); td drop 2> ♦) 

where 

s drop i :: s .    <i head (null *) gen; id * gen> 

The accumulation taKes a tree argument, T, and a sequence of binary operators, "td", 

preceded by the initial value of the accumulator. These functions are applied to the 

non-terminal nodes and the current value of the accumulator. When the function 

sequence terminates or the tree node is atomic, the accumulator replaces the terminal 
node in the result. 

The function defined above [14] may then be written: 

t maxltree :: t V <0; length max * Ren> 

For example, 

<1; <2;3;4;<5;6»; 7> maxltree 

* <1| <2;3;4j<5;6»; 7> .   (V < <!; <2;3;4;<5;6»; 7> length max 0; 

length max * gen> *) 
£ <1 V <3; length max I gen>; 

<2;3;4;<5;6» V <3; length max « gen>; 
7 V <3; length max * gen» 

* <3; <2;3;4;<5;6» .   (V «2;3;4;<5;6» length max 3; 
length max * gen>*); 

3> 

5 <3; <2 V <4i length max * gen>; 3 V ...; 4V ...; <5;6> V ...>; 3> 
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= <3; <4;4;4; <5;6> .   (V «5;6> length max 4; length max * gen>*)>; 3> 
s "^ <4^i4; <5 V <4; length max * gen^ 

6 V <4; length max * gen»>; 3> 
■ <3; <4;4;4; <4;4»; 3> 

The accumulation operator is the most tentative of the top down operators 

introduced, for the operation never applies to terminal nod-s and the association of the 

initial value with the function sequence is distasteful. However, .t is clear that a 

relationsh.p exists between cosequential accumulation and top down accumulation, and, 

in fact, the basis should ultimately be reformulated to emphasize this consistency' 
There is a similar relationship between "| 4 td" and "iv / fs". More extensive study 
along these lines is necessary before a concrete reformulation can be maoe. 

5.     Summary of top down operators 

At this point a top down "recursionless" construct has been sketched for use in 

tradit.onal Algol-like languages. The construct arises from pragmatic considerations of 

how recursion is frequently used to generate a recursive structure. From this 

construct (and imagined extensions) several top down operators--"!, !, and V"-have 

been defined, which have implicit termination facilities and which relate effects obtained 
using the recursionless construct in conjunction with its control variable. 

These effects are analogous to those obtained in factoring the loop from gotoless 

languages, and the top down operators are directly (vertically) analogous to the various 

forms of usage of accumulation and coapplication from the original basis. The side 

benef.ts of simulating mutual recursion and multiple argument recursive functions arise 
from these operations. 

The only serious problem concerns "corecursion", insofar as termination of top down 

generation .s not factorable in the same sense as is sequential cogeneration. More 
precisely, an implementation of: 

s .    fsl .   fs2 

is able to pulse generators for V, "fsl" and "fs2" in a loop, apply the functions and 
pulse all three again.   The same is true for T; 

t I fsl ! fs2 

We can recur to the first terminal node, pulsing at each recursion level both "fsl" and 
fs2", applying the resultant function, etc.   This is permissible because: 



RECURSION 80 

t ! fsl !fs2 B t !(fsl .   fs2) 

However, this association is not possible using 'T or "V", for 

t i fsl i fs2 is not s t i (fsl .   fs2) 

and hence, if "fs2" is a termination function (a tree trirrimer) we cannot obtain the ef ect 

of tht cosequential application. This is not the case with iterative accumulation—it an 

be executed cosequentially with coapplied or coaccumulated functions. The problem 

arises from the lack of a result definition which is defined "stage-wise" with recursion. 
For example, the function: 

«0>;   1; <2»  i  (. (rid *) . < «0>i  1; <2»;  1; «()>;  1; <2» >) [15] 

first defines 

«<0>; 1; <2» 7; 1; «0>i 1; <2» 7> 

and recursion will occur where the Ts have been placed. The second level of 
recursion will generate: 

< <«0>; 1; <2»7; Ij «0>; 1; <2»7.>; 

1; 
«<0>; 1; <2»7i If «0>j 1 <2»7> > 

Because there is no intermediate representation of these stages of recursion analogous 

to the stages in iterative accumulation, infinite generations cannot terminate in the same 

manner. (In essence, it is as though accumulation were defined as the val of its current 
definition; the accumulation sequence per se would then be inaccessible.) 

Although we can deal with this problem in terms of coroutines (see Chapter IV), a 

development which makes the various stages of the recursion part of the result would 

be preferred. We simply do not see how to do this currently, but believe it can be 
done. 

6.    Bottom up 

A second candidate for a "recursionless" construct is a "bottom up" operator. In 

developing a bottom up recursionless construct we proceed exactly as with the top 

down operator.   A bottom up algorithm is frequently explained in terms of "reducing the 

MMMMaMMMMMMlMM 
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handle" of a tree, in the jargon of translator writing formalists [FG]. In essence, a 

function is applied to and replaces the deepest nodes in a tree before it is applied to 
their superior nodes. 

A recursive formulation of such an operation for a tree "t" may be expressed: 

t  f  :: t  tp then (t tf) else (t . ('f *) bu) r16] 

A recursionless construct for such a form in an Algol-like language could be: 

<recursionless construct ::= 

bottomup <variable> «- Recursive structure> 
■«termination $pecification> 

do <bottom up function body>. 

Again the <variable> refers to the entire subnode within the body, predicate and 

termination function, but the structure must be a tree (unlike top down operators, 

where any value which causes a sequence to be generated is acceptable). This' 

requirement arises simply because the operand structure must initially contain terminal 

nodes; a bottom up algorithm cannot generate the structure to which it is applied; the 

top down algorithm must. For example, a bottom up operation which sums the elements 
at the terminal nodes of a binary tree, T, might be written: 

bottomup T*-t until atom(T) whence T do T[l]+T[2]. 

In developing a bottom up operate for inclusion in the basis, we proceed as with 

the top down case, by defaulting the termination predicate to "atom?" and introducing a 

sequence of bottom up operators or "sections". The bottom up operator, "T", may be 
written: 

t  T bu  :: t  atom? else (t . ('T (bu tail)*) (bu  1st)) [17] 

It retains the correspondence between function sequence index and tree node depth as 

before. However, the last element of the sequence (corresponding to the last terminal 
node) is applied first. 

A recursive evaluation procedure which sums the elements at the odd depths of a 
binary tree, and takes their difference at the even depth-, may be written: 

s sum :: s 1st + (s 2nd); 

s diff :: s 1st - (s 2nd); 

  M 
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t sumdif :: t T (<sum; diff> gon *) 

For example, 

<1; <2; «3;4>; 5»> t (<sum; diff> gen ») 

= <1; <2i «3;4>; 5»> .    (T <diff; sum; diff...>*) sum 
■ <1 T ...; <2i «3;4>i 5»T<diff; sum; diff...» sum 

a <1; <2; «3;4>; 5» .    (T <sum; diff; sum.,.>*) diff> sum 

= <1; <2 T ...j «3;4>; 5> t <5um; diff; sum...> >diff>sum 

■ <1; <2; «3;4>; 5> .    (T <diff; sum; diff...>*) 5um>diff>sum 

= <1; <2; «3;a> T <diff; sum; diff...>; 5 T ...>sum> diff> sum 

s <1| <2; «3;4> .    (1 <sum; diff; sum...> *) diff; 5> sum> diff> sum 
* <1; <2; «3 T ...; A T ...> diff; 5> sum> diff> sum 

s <1; <2; «3;4> diff; 5> sum> diff> sum 
■ <1; <2; <3-4; 5> ;um> diff> sum 

■ 1*{2- ((3-4) + 5)) 

[18] 

Although termination continues to be a problem, it is clearly a separable problem: both 

top down and bottom up have the identical termination part> specification in the 
recursionless constructs. In particular, the T operator permits application of the 
termination function for both operators, separably. 

A more general form of bottom up operation allows the recursive traversal of the 
argument tree and the subsequent possibility of retaining the original node as well as 

the bottom up value at each level of recursion. The recursive form below allows the 
bottom up function to be binary: 

t  f  :: t tp then (t tf) else (t . ('f *) bu t) [19] 

Notice that in the expression [18] the action of the bottom up function has meaning 

even if the operators "sum" and "diff" had been bmary. In fact, this is permitted, the 

bottom up function is defined as [18] exemplifies, for binary functions. That is the 

"tree" of "sections" defined by the bottom up form [17] is the value of the operator 

when the sequence of functions consists of binary functions. A section so defined will 
be referred to as a "recursive section". 

To obtain the effect of [19], the bottom up function is extended to allow one of its 

arguments to be a recursive section (instead of a sequence of sections). The structure 

of the recursive section participates in the operation in the following way.    The tree 

/ 
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structure of the argument to the section must be identical to the other argument tree 

(or have a terminal node where the argument tree does not). The functions are then 
applied bottom up to the corresponding pairs of nodes. 

For example, 

<a;  <bi  c»  T  (f  *)  T  <q; <r; <s;t»> [20] 
s <a; <b;c>f>f T <q; <r; <s; t»> 

s <a; <b;c> f <(; <s; t>» f <q; <r; <s; t»> 

In one sense, the "recursive section" it, the only truly recursive representation for a 

"program" we have dealt with. In particular, each of the recursive operators imposes a 

recursive interpretation on sequences >f functions used in a recursive control context. 

The recursive function, by contrast, contains the recursive structure explicitly. Later in 
this chapter we deal with the significance of this structure more fully. 

More general forms 

The top down and bottom up operators mimic the standard notions which they 

represent. Not to belie their significance when used alone, it might appear as though a 

plethora of "recursionless constructs" are required to cover recursive functions in 

general. That is, one might feel significantly constrained were the recursioness 

operators used in lieu of recursion in the basis-much more so than with the gotoless 
constructs. 

We do not feel this should be so, and divert our attention to recursion in general, 
momentarily, to substantiate our convictions. We are primarily interested in two 
questions: 

1. When is a recursive algorithm preferrable to a sequential equivalent? 

2. What aspects of recursion are not captured by the recursionless operators? 

To approach the first question, we notice that it is not the case that all functions 
defined on recursive structures need themselves be recursive. For example, if a 

sequence "s" is a path in a tree (a sequence of successive indices of subnodes), the 
node at the end of the path in tree "t" is: 

t / (sub * .   s) val 

A recursive formulation is unneceisary: 
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x f p :: p isemptyseq then x 

else {x sub(p 1st)'f (p tail)): 

The point is simply that recursive data structures do not necessarily require ;ecursive 
accessing functions. 

The recursive implementations of "." and "/" [2] demonstrate that recursive control 

structures need not Jeal with recursive data structures. In Chapter II (p. 56) a 

recursive schema was presented which was also not "essentially recursive"; however, a 

brief study of that schema is in order. It may be reformulated without termination 
conditions in terms of the basis as follows: 

x  f  ::  x  td  'f  bu  / [21] 

This function nay be written iteratively as a double accumulation: 

x  f   :: terminal-value/(bu*.(x/(td*) reverse))val [22] 

whene "terminal-value" and the termination of the mrer accumulation depend on the 

omitted predicate and terminal functions. In essence, the reverse of the top down 

accumulation is the "argument stack" sequence, which is then an argument to the bottom 
up accumulation sequence. 

In effect, no control information is needed in the stack—that is, the return point 

position is fixed. We therefore say the function is not "essentially" recursive. Indeed, 

the recursive implementations of "." and "/" [2] are of this form, and the iterative 

definition is preferred. (Both would puKe the sequential arguments, but a recursive 
implementation wastes "stack space" by storing a constant return point.) 

Only a slight modification to the schema is required to produce an "esentially" 

recursive function—one in which the bookkeeping of the return point is non-trivial and 

justifies a stack implementation. Consider a recursive function whose body contains 
several recursive calls: 

x f :: ...'f ...    'f ...    f. 

In fact, this form of function is "essenüally" recursive, for the context of the call (the 

bookkeeping of the return point) is non-trivial (it would be very difficult to do 

iteratively—in fact, it would require pulsing a data structure via "push" and "pop" 

primitives). These calls are either multiply recursive-i.e. f(gl(f(g2(x))))—, or they may 

be executed independently, dependent on context-i.e.   bu(f(tdl(x)), ...   , f(tdn(x))). 
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A stronger generalization would permit the recursion to occur within a loop. This 

form would also be "essentially" recursive, for the bookkeeping of the loop indices at 
the various levels of recursion would be non-trivial. 

Both cases (excluding multiply recursive calls) require that recursion occur in some 

sequence within the recursive function body. Thus, a more general recursive 

form-and, indeed, an essential one, may be derived (again without termination 
conditions); 

*   f   ::   X   td   .   ('f   *   bu   x) r^l 

Notice that, for td 44 (the left identity function), x f is a combination of the bottom up 

forms and for bu £ lid (a left identity ignoring its right argument), x f is a top down 
accumulation form: 

x id .    Cf * bu x) s x T (bu *) T x; 
x td .   ('f * lid x) 5 x i (td *) 

But notice particularly, 

x  td . ('f *  bu x) = t  T (bu *) T (x i (td *)) [24] 

where t is a function of "'xiad*)" and the termination function--e.g. "x i(td*)!(tf*)". 

That is, the quite general recursive form [23] is equivalent to a separable application of 
.he top down ..md bottom up forms. 

The "double accumulation" analog between [22] and [24] is particularly striking. It 
is as though the top down form were an accumulaton which branches at each subnode 

(forks) and bottom up is a "merging" form of accumulation (joins). Both forms are 
"essentiallv" recursive, for a stack is required for the index of the loops in [121 and 
[13]. J 

Actually, more general forms involving multiple arguments and mutuallv recursive 

functions are obtainable. In particular, if we introduce a new notation to allow mrltiple 

arguments (in excess of two) to operators, we can demonstrate the extreme complexity 

of functions which can be composed using the recursionless operators. The notation 
simply requires multiple arguments to be in brackets.   Both 

[a;b] f c :: body 
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and 

a f [bjc] :: body 

represent three argument operators whose calling sequences are: 

[actual-1; actual-2] f actual-3 

and 

actual-1 g [actual-2; actual-3], 

respectively. 

The function, 

t  f  [td; tf; bu] :: t i td ! tf t bu [25] 

is equivalent to the recursive implementation: 

t   f   [td, bu, tf] :: t  rf [td  1st; tf; fd tail; bu] [26] 

t rf [ace; tf; td; bu] :: 

(tf emptyseq else (td emptyseq) else (bu emptyseq)) 
then t 

else ((t atom?) then (t (tf 1st))) 

else (t .   (Vf [t (id 1st) ac; tf tail; td tail; bu tail] *) (bu 1st)) 

This is indeed a fairly general recursive form, and the implementation of the function 

does not even include the effects of escape functions in the recursive programs! 

The application of corecursive operators should not be implemented 

sequentially—that is, the top down operator should not be applied to the entire tree 

before proceding to apply the next top down operator, etc. In fact, the functions [26] 

should be the implementation for the function [25]. The "recursionless" operators are 

clearly "corecursive" in the same sense as functions of sequential objects using 
coapplication and accumulation are cosequential. 

/ 
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A Recursive "*" 

Although the corecursive operators may be used to replace the recursive functionr,, 

it is no' clear that the basis contains any "recursionless constructs" analogous to the 

"gotoless operators" of the initial basis. In particular, we can draw the following 
parallels between the sequential constructs and recursive constructs: 

1. Constant representation: <1;2;3> sequence and <li<3i5>;<9i<6>;7» tree; 

2. Cosequential/Corecursive: "." & "!" and "/", "V" t 'T; 

3. Gotoless/Recursionless: "*" and ?. 

There is no obvious potentially infinite recursive form to correspond to the potentially 
infinite sequential form, the loop. 

In fact, the corecursive operators impose a recursive interpretation on sequences of 

functions; the unbounded recursive elements to correspond with loops arise from using 

loops on funtions which (sequences) are then interpreted recursively by the corecursive 
operators. 

The correspondence between the corecursive and cosequential constructs can be 

emphasized much more strongly if the loop is considered to be a form of "quote" 

operator.   To understand such an interpretation of the loop, consider the expression 

s .    <1;2;3> .    p 

If it is desired to suppress the "normal" action of cosequencing the sequence "<1;2;3>", 
the loop operator is used, viz. 

(<1;2;3>*) .  p [27] 

"Quoting" is generally understood as the act of suppression of the normal interpretation, 
and hence, "*" may be viewed as a "quote" operator of sorts. 

Now, if the corecursive operations were modified to "coapply" two recursive 

structures, instead of using the interpretation between sequences and trees imposed in 

the definitions above, the notion of a recursive "quote" in the same sense as for "*" 

arises. For example, in the bottom up operator discussion, it was convenient to define 

a "recursive section" consisting of a sequence of binary operators applied (bottom up) 

— _ 
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to a recursive data structure (see [19] and [21]). if the top down operations were 

defmed analogously, a recursive quote "8" could be defined which imposed the recursive 
sequence structure used above.   That is, to obtain the e'fect of: 

t t (ev *) 

we would have to write 

t T (ev * «) 

to  suppress  attempt",  to  interpret  "ev*" as a recursive form, just as V suppresses 
attempts to interpret its argument as a sequential form. 

This presents a more unified view of corecursion and cosequentiality, for now we 
can consider the effect of recursive "data" structuring using the recursive quote, "S" 

Previously, the interpretation of the sequence of functions was accomplished by the 

corecursive operators themselves; .e., recursive interpretations of sequences were 

confined to sequences of functions. With the recursive quote X-a true recursionless 

construct-, fences of "data" can be considered. That is, we can define a function on 

the recursive representation, relying less on whether it represents a program or data. 

This notion represents the fringe of our understanding of the recursionless 
constructs' interactions with the language basis. Obviously, several different recursive 

quotes could be considered; this might be significantly more complex than imposing a 

recursive interpretation depth-wise on a sequence as has been done above. Although 
future considerations of recursionlessness and corecursion should probably be based in 
part on this recursive quote, the implicit (recursive) quote in the corecursive nDerations 

should not be disregarded. Even in the initial basis, it would be quite consistent to 

permit * to be imposed implicitly; for example, there is little reason not to permit the 
implicitly quoted interpretation: 

a .    + .    b e a .    (+ *) .   b 

for V simply does not have an interpretation as a sequence. Obviously, the explicit 
use of the quote must be permitted for cases such as [27] above. There is no 
ambiguity between: 

<f; f> and f<l;2> 

with respect to how to treat them as operands of corecursive operations-the former 

  ^          - - - ■ 
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requires the (implicit) "8", the latter does not. Hence, the formulations above of the 

corecursive operations may ultirnatoly be preferred; however, the notion of a recursive 

"quote" should be considered for a future formulation of the basis. 

Recursionlessness and structured programming 

We emphasize that our considerations of recursionlessness are preliminary. 

Although we are able to express significantly complex recursive functions (see [25] and 

[26]), we do not feel we have more than "scratched the surface" of what might be 

interesting and useful. 

In terms of eliminating recursion, we are not convinced that we have as strong a 

case against recursion as we do against the goto. Although the potential for misuse of 

recursion is at least as great as for the goto, the actual (observable) misuse is not. 

This arises from users' qualms over the inefficiency of using recursion a! all in 

programs, and in general, from confinement of recursive programming to academia (at 

least in the U.S.). That is, if students vj^re taught that recursion is as important and 

useful as the goto, the programming dilemma might be considerably more complex. 

We are thus in a position of being able to structure a potentially dangerous concept 

before it actually becomes dangerous. Such structuring is useful in its own right--for 

example, it begins to eliminate the detail arising from implementing algorithms which are 

naturally expressed as "top down" or "bottom up". 

Historically, would we have had to advocate eliminating the goto if news of its 

existence had awaited the last few lessons of instruction in programming courses? 

— . 
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CHAPTER  IV 

COUEPENDENT  STRUCTURES 

In Chapter 111 it v.as mentioned that come programs written in the initial language 

basis were unduly complex because of their lack of a "clean functional decomposition". 

This chapter examines the nature r' ,uch pro-ams and ultimately shows that their 

concise specificat^n hinges on the r        1 of coroutines or "codependent structures". 

We shall be dealing with structures which are described independently and each of 

which can oe thought of as being in some "state" || any given time. Such a group of 

structures will be referred to as "coroutines", although the traditional notion implies that 

the "state" include a program counter, which is not alw, ,s necessary here. In this 

chapter, we are concerned with the extent to which the independently described 

structures can and should depend on the states of each other. 

Coroutines in Applicative Languages 

Although there are many examples of programs whose implomenh.tion is made more 

efficient through the use of coroutines^, it is somewhat more difficult to justify 

coroutine control from a structured prop/ammmg point of view. We are not concerned 

with justifying the coroutine control present in the cosequencing and corecursive 

operators, for the decomposition there is essentially functional. However, if we move 

to a more general coroutine structure, issues involving Blobal variables and side-effects 
emerge. 

In one sense, the argument for the Inciusion of a coroutine mechansim is a 

counter-argument to the primary argur„e„t for an applicative langauge. In an 

applicat.ve language, identical expressions in the same static context have identical 

values; that is, functions are well-defined in an applicative language. This allows the 

programmer to depend on the preservation of relations on the environment over control 
constructs such as function calls. 

•fFrequent reference has been made to compiler decompositions, for example. 
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From a structured programming point of view, programming in an applicative 

language may become dangerous because the programmer might become dependent on 

such invariant relations. For example, the invariant relations may arise from the way in 

which a data structure has been implemented, and assumptions based on these relations 

may then become an integral part of the program. Changing the data structure would 

then be impossible, even though the changes were consistent with the original 

specification of the problem. That is, we must distinguish between apparent structure 

and the implementation of that structure. In and of itself, this is actually only an 

argument for a data structuring mechtnism. However, it will be shown that the explicit 

subordination of one structure to another required in an applicative language presents 
particular problems to modifying the program structure. 

To understand how this arises, and in particular, to understand how a problem can 
lack a "clean functional decomposition", a LISP 1.0 program will be rather thoroughly 

dissected. LISP 1.0 is an applicatve language, and, hence, all problems require a 
functional decomposition whether it be "clean" or "unclean". The problem to be solved 

by the program is intentionally unrealistic: given two lists, "def" and "s", the function 

"de" below will produce a result whose elements are those of "s" except where 

elements of "s" are less than "3". In those cases, the elements chosen will be 
successively from the list "def".   Thus, 

• •(1 3 2 4)| 
def = (7 9) 

de[def;s] = (739 4). 

Two LISP functions which accomplish this are: 

de[def;s] = [null[s] ^  NIL; [!] 

Iessp[3;car[s]] =» cons[car[s]; de[deficdr[s]]]; 
T =» F[defj s]]; 

F[defis] = cons[car[def]; de[cdr[def];cdr[s]]]; 

("F" is separate for explication below; we assume "def" is of sufficient length that we 
cannot run out of default values.) 

First notice that the bc.y of "de" is free to reference "def" in any way desired. 

For example, there is no protection from using "caadr" on it. This argues for a means 

of structuring "def" in the sense of constraining its accessors to a particular set of 
functions—"car" and "cdr" in this case. 

MMMMMrMMHHIM 
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Notice also that V and "de" are "corecursive"--each time "de" is called, "s" is 
pulsed by taking its "cdr". This is not the case with "def"; however, "def" and "F" are 

corecursive in the same sense. Although we might immediately imagine that a 

decomposition which emphasizes this cosequentiality is possible, we first consider the 

implications of allowing the element of "det" chosen to depend functionally on the 

elements of "s" which are less than "3". This can be accomplished by respecifying "F" 
as: 

F[def;s] = cons[f[def;car[s]]; de[deficdr[s]]]. [2] 

where "f" accomplishes the functional dependency. If we were able to instantiate "def" 

with "f" previous to the execution of "de", or were able to define it global to the 

functions called by "de", there would be no need to pass "def" as a parameter. The 
implementation below could be used. 

[3] de[def;s] = de^s]; 

de'Cs] = [null[s] =» NIL; 

lessp[3; car[s]] ^ conr,[car[s]; de^dr^]]]; 
T 4 F[s]]; 

F[s] = cons [f^carts]]; de[cdr[s]]]; 

f'[e] = f[def; e]. 

This implementation uses the LISP binding which permits "def" to be global to ,-ll the 

functions called by "de". This is subject to the same dangers as [IJ-i.e., there is no 
way to confine the access of "def" to the call "f". 

Now, what if "f" were to be programatically dependent on its calling sequence--that 
is, what if "f[def;s]" were different dependent on the number of times it has been called 

from "F"? A particular example for "f" will help to illustrate the problem. Notice that [2] 

or [3] could not be used to implement [1], in which the element of "def" selected 

depended on how many had previously been used. Hence, if we desire "f" to act 
exactly as [1], but additionally insist that it add the element of "s" to the element of 
"def", the need for a new programming device arises. 

What is frequently used in such a situation is an encoding device—the value of "f" 

must be encoded with the updated state of the computation which we desire for "f". In 

this case, the updated state will be the "cdr[def]". Thus, we can accomplish the effect 
by defining F (in scheme [1]) as: 

         -  .-■-■-- 



■  ' 

CODEPENDENT STRUCTURES 93 

Ftdefis]  =  cons  [car[f[def|car[5]]]]; r4j 

de[cdr[f[def;5]];cdr[s]] 

f[def;e] = cons [add[car[def]ie]i cdr[def]]. 

This decomposition is what is meant by an "unclean functional decomposition" to a 

problem. In essence, we have a program T which produces a sequence of values 

depending on "def" and an argument sequence of Vs. However, the program "f" is 

considered entirely subordinate to "de", and its state must be continually passed around 
as a parameter. 

If this subordinate were important from a structured programming point of view 
then the above functional decomposition ([4] with [1]) it to be preferred. However' 

from the statement of the problem, there is no reason to prefer implementation [4] to' 

one hke [3]. To be precise, even if "f" had the side effect that the "cdr[defr replaced 

det -which would enable us to define [4] more concisely as [3]-there would be no 
effect on the relationships to be considered in "de". 

The only objection to [3] is that the global variable "def" ,s accessible by "de" If 

there ,s a way to specify the existence of two programs-each with its own state 

vanables-and limit their references to each other to a functional interface, this 

objection is removed. This is almost an exact definition of "module" according to Parnas 

PA . and the theory surrounding his work has a definite bearing on the coroutine 

aciht.es about to be introduced into the basis. It is also consistent with the efforts 
toward constraining global variable usage [WS]. 

It is particularly interesting to note that the notion of side-effect-which the above 

implementation introduces-can be independent of "assignment". That is, no notion of 

assignment ever enters the basis-yet codependent structures introduce the notion of 
side-effect. 

Our approach to the inclusion of corou'ines in the basis it  as follows     First   the 

coroutine   nature   of   the   cosequencing   operators   is   examined,   and   operators' are 

developed  to  introduce   more  general coroutine facilities, which  are  presented  next 

Fma ly, some implications of coroutmes to data structuring are discussed, followed by a 
brief discussion of the implementation of the basis in terms of coroutines. 

As in Chapter III, it should be emphasized that the operators presented in this 
chapter are tentative. We are more interested in explaining the desired effects than in 

proposing   a   concrete   syntax   for   their   specification.     AIM,   the   reader   should   be 

M     
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forewarned that the operators introduced in this chapter do not produce expressions 

which are significantly more concise than corresponding Algol programs, for example. 

This effect arises from tho more primitive nature of the coroutine operators themselves; 

effectively, they introduce the ability ;o explintly pulse sequential structures. Much 

has been made of the lack of such a requirement in the basis to this point; here we 

examine where the ability to puloe structures is desirable, if only to define and study 
higher-level cosequencing and corecursive operators. 

Some Remarks on Names 

A brief digression is now in order. The basis operations generally tend not to 

impose special interpretations on names, but the facilities presented in this chapter rely 

on names to a much greater extent. In particular, none of the operators in the basis at 

this point is defined with a name as a required argument, nor does any defined operator 

give a preferred interoretation to a particular name as, for example, the for construct in 
Algol gives preferent.al treatment to the control variable. 

This lack of reliance on names for semantics is .ntentional. Any construct requiring 

a name increases the number of names temporarily introduced by the programmer--a 

phenomenon the "operator" notion avoids (see Chapter 1). Also, scope issues are 

frequently very complex, and when semantics can be specified without their 

involvement, a description is often simplified immensely. We advise this language 
design technique: defer issues of names as long as pcssible. 

We do not, however, deny the language enhancement that names can and do 
provide. In particular, the escape operators should be extended to allow named control 

context escapes, and such are included in the final basis [WU,I972]. Also, where 

temporary functions are required--as occurs frequently with accumulations-scope 

control such as block structure should be permitted to localize the definitions and 

possibly even control variables or named accumulators. However, the lack of such 

facilities has been a very effective aid to simplifying the presentation of the basis to 
this point. 

In the operators oresented below, names cannot be ignored as easily--in fact, some 

Of the operators would be needlessly complex without reliance on names. This does 

not reflect a change in philosophy, but rather a concession to the more primitive nature 
of the coroutine operators. 

/ 
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Cosequencirii, Roexamined: Partial Cosequentiality 

By way of introduction to coroutines, the cosequencing operators "." and "/" are 
reexammed. In particular, notice that in the expression "data . program", the data is 

cosequential with the program. Also, the revilt is cosequential with both the program 

and the data. That is, not only does "." identify data element "i" with program element 

"i", but also the value of "." is a sequence whose "ith" element can be identified with the 

1th" element of the data or program sequence. There ate programs in which one such 

cosequential identification can be made but not the other two (i.e. program with data, 

program with result or data with result).   They are considered separately below: 

I.   Non-cosoquontial result: the emit operator 

An example in which the program is cosequential with the data but not with the 

result is the "mask" operation; the nonempty elements of the argument sequence make 

up the result sequence of the "mask" operation (see Chapter 11 or Appendix III). If the 

implementation does not rely on "<> gen" (see discussion. Chapter II), the function must 
be written using an accumulation: 

s  tf  x  ::  x  then (s  cone  <x>) else s; 
s mask :: <> / (tf * .    s) val; 

[5] 

In this implementation of the mask function, no element of the masked sequence can be 

produced until the entire argument sequence (s) has been generated (by virtue of the 

val operation). Unless the implementation is exceedingly clever and notices that the 

resu.t sequence only changes by appending, an unbounded argument cannot be used. 

Even then, the semantics of val should ensure that the sequence terminates; i.e., the 
expression "1 * val" should be undefined. 

However, it is clear that in a simple scan across the sequence an element could be 

output (entered into the result sequence of "mask") whenever it is nonempty. The emit 

operator is defined to accomplish this, and actually constitutes an ability to "pulse" the 

output sequence, or to explicitly "generate" elements one at a time. The operator 

outputs its (left) argument as an element of the result sequence for the innermost 

sequential expression in which it is embedded. The mask function above [5] can then 
be rewritten: 

x  them   f  :: x then (x  f); 

s mask :: s .   (the \l emit *); 
[6] 

 ' -   ■ 
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Then, 

<1| nil; 3> mask 

5 the sequence emitted from 

<1 then (1 emit); nil then (nil emit); 3 then (3 emit)> 
s <1; 3> 

Only emitted values constitute the result of a sequence expression containing an emit. 
The expression value of the emit is its argument. 

The introduction of an emit operator which requires a name as operand is 
particularly useful, and motivates the second operator of this section. The named emit 

operator--emitn--hinges on the notion of an "emittor-collector" expression, which is of 
the form-'': 

emittor-expression : [ collector-name^ collector-name2; ...] 

The emitn operator requires a collector name as its right operand, and simply emits its 

left operand to the named collector. (Its value in the expression, as with emit, is its left 
operand.) 

A collector is simply a named entity which accumulates the elements emitted to it in 

a sequence. The emmitor-collector expression (hereafter abbreviated "EC") defines a 

result which is a set of named sequences. An element of the collected sequence set 
may be selected by name as though the name were an operator; e.g., 

exp : [a;b] a = sequence emitted to "a". 

This may be clarified if one thinks of a set of associations specified: 

[namei '•'• valuer name2 '■• value2; -   ]• 

Specifying any name after the set selects the value associated with that name in the 
set: viz. 

[a :: 1; b :: 2] a s 1 

tActually  this  is a simplified version of the emittor-collector expression.    It  will  be 
embellished throughout this chapter. 
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Thus, the emittor-collector expression potentially has a set as its value. 

The following example defines an operator "co" which produces an EC whose 

collectors have the even- and odd-indexed elements of a sequence "s" as collectors 
named "even" and "odd": 

s  eo  :: s. (<emitn odd;emitn even>  gen *) : [even; odd]; [7] 

<1;1;2;3> eo odd 

= sequence emitted to "odd" in 

<M;2;3> .   <emitn odd; emitn even; emitn odd; ...> : [even; odd] 

■ <i}2> 

The EC expression is especially useful -vhen several functiont rhare a common complex 

control structure. It also represents the beginning of an association mechanism whxh 

is of significance to thu concept of "structured data", discussed later in this chapter. 
The collector portion of ECs is generalized presently. 

2.     Non-cosequential operand: the collect operator 

The emit operator WM introduced to permit program and data cosequentiality, 
without requiring either to be cosequential with the result. The collect operator, to be 
introduced presently, facilitates writing programs which have cosequential program and 

result, but not cosequentiality of data and program or data and result. The accumulate 
operator is already of this form: only the program and result are cosequential. 
Frequently, functions are written which "pulse" an input sequence—the accumulated 

argument. This pulsing is in terms of "Ist" and "tail" in much the same way as LISP 

functions use "car" and "cdr" (see Chapter III and [l]-[4] above). Here the ability to 
explicitly pulse a codcpendent sequence is introduced. 

The problem used to explicate the "unclean decomposition" (see [1]) is now reused 

to introduce the semantics of the emit operato.-. In particular assume that a sequence 

called "def" is to be used to replace elements which are smaller than "3" in a sequence 
"s" by a function named "de".   This may be written in the initial basis: 

i f a :: <a then i else (i + 1); 

a else ('def sub i)>; 

def de s :: <1; nil> / (1st f * . (s . (ge 3 *))) . (2nd*) [8] 



CODEPBNDENT  STRUCTURES 
JO 

The reader need not understand the part,culars of th.s function, but in essence, the 
accumulation keeps track of the mde* of the defaults sequence to be used in the event 
of an empty element in s.    Thus, 

<100; 200> def <3; 1; 4; 2> 

would produce the accumulation: 

«1;3>; <2i<100;200> sub !>; <2;4>; <3; <100;200> sub 2». 

The  selector  *     2nd *" then produces the result: <3; 100; 4; 200>     In effect, the 

accumula .on     pulses"   the   default   sequence   (by   mcrementmg   the   index   used   for 

d'e'ctly   ' COlleCt ^^  Perm,,S the  ab,",y t0 PUl5e an argUment se^ence 

The collect operator is introduced as an extension to the EC expression above 

Instead of a set of collector names, a s,mPle collector expression is permitted in 

conjunction with an emittor expression wh.ch uses the emit operator (and not the emitn 
operator). In addition, any sequence may be used to stand for an emittor which emits 
that sequence.    For example, the function "de" [8] may be rewritten: 

def de  s  a def i (s . (ge 3 else collect *)) r^ 

The value of the collect operator is the element pulsed from the emittor.    The value of 
an EC of this form is the sequence to the right of the ":".   Thus, 

<100; 200> def <3; 1; 4; 2> 

■<100|200>,(<3,ll4|2>.    (ge 3 else colled *)) 
■ <100; 200> : <3i collect; 4; collect> 
s <3; 100; 4| 200>. 

Once again, the introduction of an interpretation reliant on names is useful The 

em, .or expression .s now permitted to be a set of named em.ttors; again none of the 
emittors may reference named collectors.   Such a set .s specified: 

[emittor-namel :: emittor-expression; 

emittor-name2 :: emittor-expression; ...] 

irt'evn
a|
theC!l!eCtn|OP!ra,0r iS ,ntr0dUCed ,0 5eleCt,Vely >ulse" the ***** by name Its value is the pubed element. 

x 
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To illustrate, the following EC interleaves the elements of two sequences into one: 

s interleave p :: [s::s; p::p] : v<collect s; colled p> gen *) 

Assuming a collector expression terminates if it attempts to collect a terminated emittor, 
the above function wiil produce: 

<1;2>  interleave <3;4> 

s[s::<lj2>i p::<3;4>] : <collectn s; collectn p;; ...>t 
= <1;3;2;4>. 

[10] 

It is important to nott that the collector expression is controlling the pulsing of the 

emittors, and not vice versa. That is, this construct should not be confused with that of 

several languages which permit a loop driven by an emittor (generator) [SC]. (The 
initial basis permits this latter facility quite easily.) 

To summarize, the emit operator has been introduced in order to permit 

cosequentiality of program with data, without insisting on the cosequentiality of either 

with the result. This capability corresponds directly to the notion of a generator or 

"pulsed" output. Similarly, the collect facility was introduced in order to permit 

cosequentiality of result with program, but not insist on tt.e cosequentiality of either 
with the data.   Analogously, this facility provides "pulsed" input from a generator. 

We are about to proceed to a discussion of ? more general coroutine facility. It will 
be useful to have the emiitor/collector expression? summarized syntactically in BNFtt: 

<emittor-collector> ::=<simple emittor-collector> 
/<join etnittor-collector> 

/<fork emittor-collector> 

<simple emittor-collector> ::= <unnamed-collector emittor-expression> : 
<unnamed-emittor collector-expression> nn 

tA quote problem becomes quite pronounced here: do the collects occur before the 
looped expansion or not? For now, assume not. 

ttThe notation <x>-list is used to ndicate a list of <x>s separated by semicolons. 
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<join emittor-collector> ::= <einiftor-set> : <named-emittor conector-expression> 

<forK emlttor-collector> ::■--• <nameJ-collector emittor-expression> : <collector-set> 

<emittor-set> ::= [<emittor ä•■,sociation>-ll5.t,] 

<emittor association> ::= <name; :. <unnamed-collector emittor-expression> 

<collector $et> ::= [<name>-liGt] 

Where the "unnamed" expressions (e.g. <unnarned-collector emittor-expression>) 

contain neither collectn or emitn (in <unnanned-emittor...> and <unnamed-collector> 

respectively), and the "named" expressions contain only those constructs. To reiterate, 

any expression producing a sequence may be ur^d as an <unnamed-collector 

emittor-cxpression> and the value of an EC is either a set of named sequences or the 

collector expression. Of course, ECs are simply expressions, and may be used in any 

context where an expression may be used. 

Codependency 

The emit and collect operations quite clearly require a coroutine structure for their 

implementation. In this section the relationship of these operations to a more general 

coroutine facility is discussed. It will be shown that the operations are not fully 

adequate for expressing programs which do not admit a clean functional decomposition; 

in particular, the nature of "codependent" structures is examined more closely. 

The emit and collect facilities do permit a cleaner decomposition than does the 

coresponding expression in the initial basis; they always eliminate iin extra accumulated 

variablet. For example, compare [4] and [5] or [8] and [9]. Thh results from the 

factoring of the state of the non-cosequential sequence from thp primary sequence 

(result from program and data in emit and data from program and result in collect). 
Although definitions of "coroutine" vary, they share the separation of states of 

processes as one aspect of coroutine control. It must be emphasized that coroutine 

execution is a sequential process; although the states of coroutines are separate thoy 

depend functionally on the sequence in which they invoke each other. In this sense, 

the emit and collect facilities define "codependent" expressions. 

tin the initial basis, a sequence is frequently used as the accumulated value in an 

accumulation. This sequence is often of fixed length, and the various elements of it are 

selected, much as variables in a program.   See [5] and [8]. 

 — - -    —    — -■■ 
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The distinction between a function call and a call to collect a value is extremely 

important. A function will be a constant; the collected value will not (in general). 

Neither codependent function can change the other's value; they can merely cause each 
to "change" their own value, by producing another sequence element. 

The distinction between a fully general coroutine facility and the collect/emit facility 

lies in the extent to which the collected sequence can depend functionally on its calling 

sequence. A general coroutine facility permits this dependence to be parameteric. To 

explain such functional codependence the Bliss coroutine mechanism is examined 
briefly.t 

In Bliss the ability to create coroutines (named "A" and "B" here) is provided. The 

precise syntax and mechanism used for the creation is -10t relevant. In essence, the 

ability to associate a control/data space (stack and program counter) with the named 

coroutines is provided. Assume that control resides in "A. Then a coroutine call, 

"exchange jump" (abbreviated exch), consists of an argument and the name "B": 

arg  exch B [12] 

much as the emit operation is used above. However, the value of the expression [12] is 

not "arg" as with emitn, but rather an argument to the exchange (in "B") which cruses 
the return to "A". 

For example, 

coroutine  A(al)  =  begin local  t; Ma)+2) exch R end [13] 

coroutine B(b2) = begin local p; p^-bl; p^(bl + l) exch A end 

abstracts the Bliss facility for coroutine declarations. The parameters "al" and "bl" are 

the initial parameters to the coroutines—the parameter of the first function call or 

exchange jump. They are undefined after the first exchange jump from within the 

body. Assume the coroutine can be invoked by the body of the block in which these 

coroutines are defined. Then the call "A(5)" will cause "A" to begin execution, with "5" 

as the value of "al".    "A" will immediately exchange jump to "B", as though a call of 

tin Bliss, the coroutine facility was introduced as an effect difficult to obtain without 

using the goto. The synopsis here is actually a modification of a much more general 

facility than is presented. Liberties have been taken with the syntax as well 
[WU,1970,1972]. 

-■ - - 
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"6(5+2)" were made. Control begins in "B" , with "bl" equal to "V". After it is stored 

m "p", the exchange is made back to "A", with the pararr.etor "7+1". Eyecution resumes 

m "A" at the point of exchange to "B", with the v.ilue of the exchange expression as "f". 

Control then returns from "A" to the calling program. The final state of the local 
variables is: 

t = 8; p = 7. 

If the original call had been "B(5)" (instead of "A(5)") the state of the variables would 
have oeen: 

p = 8, t = undefined. 

Control would never return to the exchange in "A" in this case. 

The point is simply 'hat the coroutines depend functionally on each other--there is 

no input/output identification to be made. "A" appears as a function to "B", and "B" 

likewise to "A". Each coroutine presumes its task is primary and the coi-outines it calls 
are auxilliary to it. 

Examples of the utility of such a conceptualization are most often complex, for at 

least two non-trivial tasks must be dependent on each other, yet of distinct utility when 

standing alone. However, a conversational (interactive) language provides a nice 

environment in which such a conceptualization is enlightening. Consider two interactive 

chess-playing programs "W" and "B". A user with two terminals could play the 

programs against one another by allowing "W" the first move. He could enter "W's 

response as his first move to "B".    "B"^ response could then be entered to "V»", etc. 

The user should feel quite trivial—he is acting precisely as an exchangt jump-!-. 

Each program presumes the other to be its input function. Thus, if the two programs 

had been written with exchange jumps, and adequate naming facilities were avaUble to 

make this dynamic connection [KR], the programs would have been "more general" in the 

sense that this frequently interesting activity was made easier for the programmer. 

Ths also establishes the activity of the human player (with either program) as a 

coroutine in nature. The implications to conversational system design are beyond the 

scope of this work; minimally, facilities to separate the user's "state" from the executing 

tActually  the record of the moves is typed out to the user; hence, an intermediate 

coroutine would be required if anyone were interested in the progress of the game. 

■ata. -■■-    --   -■-■ ■ -■     ■ — ■      ......     ^. ......—. ■  ■ —        .. . - .    III,,,--   - ■■■■--^   ■ ■ 
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coroutines are necessary. 

Coroutines can be introduced into the basis by extending the emitter-col'ector 

expressions to allow emitters to collect and collectors to emit. Taking the rimpie case 

first, <simple emittor-collector> in [11], each expression may contain unnamed emits and 

collects.    For example, 

x  exch  ::  <x  emit; collect> val; [14] 

x f :: x gf 2 else (x exch); 

defaults deff s :: defaults .    (sub collect emit *) : (s .   f *); 

defines a function "deff" which produces the sequence "s", (a subset of the positive 

integers), except where the elements of "s" are less than or equal to "2", elements from 

an array "defaults" are chosen. The elements from "s" which are chosen depend 

functionally on the value of the element in "s", and the number of defaults chosen to 

that point.    (See [4].) 

In particular, 

«100;10i>;<200;201» deff  <3;1;4;2> [15] 

= «100;101> sub collect emit; <200;201> sub collect emit> : 

<3;< 1 emit; collect> val; 4; <2 emit; collect> val > 

Assume control begins at the collector m the EC-i.e. to the right of the ":". Then "1" 

will be emitted to the left expression. This causes the left expression to begin 

evaluation and when the first collect is reached, its value will be "1". Using "7." for 

"program counters" or sequencer positions, the evaluation state at this point is: 

«100;101> sub 1 ■ emit; <200;201> sub collect emit> : 

<3; <1 7; collect> val; 4; <2 emit; collect> val> 

The "»" is the program (control) sequence position. Evaluation proceeds, producing 

"100 emit" as the first element of the emittor expression. Control now changes back to 

the collector expression with an emitted value of the next collect in the collector 

expression. The evaluation of the collector side proceeds until its next emit, at which 

time the state of the computation will be: 

<100 Z; <200;201> sub collect emit> : 

<3j 100; 4; <2 emit; « collect» val> 
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Control resumes in the emitter cxpresssion until the collect is done, and the result "201" 
is computed (<200;?01> sub 2 = 20J): 

<100; 201 l emit> : <3; 100; 4; <2; 1 collect> val> 

The emittor's emit then causes control to resume in the collector, the value emitted by 

the collector is "201", and the sequence terminates. The value of .he EC is the 
collected expression, and, hence, the value is : 

<3}lO0}4;201>. 

The simple coroutine expression above does permit the definition of functionally 

codependent st-uctures. Although the emittor-collector relationship prevails--i.e. the 

collector is the 'alue of the expresion--the subordmance of the emittor is not evident 

from an examination of the emittor-expression standing alone. For example, if he 

emittor and collector are interchanged In "def." [15], the value of the collector (the 
previous emittor) is "<100i201>". 

If both sequences were of potential interest, both expressions would have to be 
specified ([15] and [15] with emittor and collector interchanged). In order to permit 

the use ot both sequences without such recomputation the <fork emitter-collector> of 

[11] is extended. The Collector set> is expanded to allow a list of named coroutine 

expressions (which use unnamod collect and emit operators). The "<named-collector 

emittor-expression" may both collectn and emitn tc the r?med coroutine expressions, 

and the result of such an expression is the association set of named corout;ne' 
expresJons. 

For example, 

q  ::     <collcctn a emitn b; collectn b emitn a> * : ne] 
[a :: <3i 1 exch; 4; 2 exch>; 

b:: «100;101> sub collect emit; <200i201> sub collect emit>] 

has the value: 

[a :: <3;10Cj4;201>; b :: <100;201>] 

and the selectors "a" and "b" may be used functionally: 

q a H <3;100;4;201>; 
q b £ <101; 201>. 

.   .  -^.^..  _.  ^    ■...^-^_,. -     ...-■■■.. .     .--     ....    ..-.   .,..,       ... ii    mi im--—--   - -■—     . .   -.    . .      .^ ^,_ ........   hM,iM        . 



CODEPENDENT STRUCRJRES 105 

In [16], the reader will recognise the expressions involved in the explications of [15] 

above. A description of the evaluation process analogous to that provided for [15] is 
presented in Appendix VI. 

To complete the coroutine facilities, the <jom emittor-collecfor> is extended to 
permit a coroutine set as the emittor portion of the expression. Again the elements of 

the emittor set expressions must use (unnamed) emits; we extend the facility by 

permitting (unnamed) collects in those expressions. This permits the controlling 

mechaniLm--the collector--to produce the value. For example, if the collector and 

emitter are interchanged in [16], the value of the expression will be the sequence of 
pairs: 

«1; 100>; <?;201» 

This introduces a flexibility into the language which is relevant to the works of 

Krutar [KR] and Parnas [PA]t. The ability to define named entities-coroutines, emittors 

and collectors-permits a dynamic linkage similar to that proposed in Krutar's work. 
Such a flexibility is consistent with the work of Parnas, but is not quite as general a 
facility as we presume he would desire. 

To return to the introductory example of this chapter and the nature of "unclean 

functional decomposition", notice in particular how difficult the effect of [16] would be 

to obtain in an applicative language. To obtain the "defaults" subsequence, 
"<100;201>", the entire function would have to be rewritten. In the basis, we merely 
modify the order of the coroutines, or put them into "sets". 

Before proceeding to a discussion of "data structures" and their relationships to 
coroutir , some mention of the lack of an explicit exch operator as the unique 

coroutine mechansim is wai ranted Needless to say, the proposed mechanism is more 
general in that exch can be implemented in terms of collect and emit. Our reluctance to 

base the mechanism on exch involves initialization problems (parameters "al" and "bl" 

in [13]). Our scheme allows the definition of coroutines which are of the nature of 

emittors--by using (...emit...collect...)-or of the nature of collectors-by using 

(...collect...emit...). That is, the former is able to emit (once) independent of any collected 

data, the latter is not. (Naturally, by using conditional facilities, more complex 

expressions can be built which are not so easily classified.) We do not have enough 

tThese works are not easily related; however, they are both concerned with the ability 
to replace "modules" easily.   This is the sense of relevance intended. 

■kMMHMM 
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experience with the facilities to propose either as strictly preferrable from a language 
design viewpoint. 

Data Structuring via Coroutines 

The relationship of our concept of "data structureG" to coroutines is extreme. To 

understand how the relationship arises, consider "conventional" data structures, such as 

arrays, lists, cyclic lists, stacks, etc. Each imposes a set of relat onships onto the 

elements of the structure. The structure essentially translates into a set of accessing 

functions for items so structured, which can be used by the program (see [WU,1971] 
and [WG]). 

The design of some data structures is such that a particular set of accessing 

sequences is assumed. In particular, a stack implementation enforces that the length of 

the sequence of pops dene to the stack never exceeds the length of the sequence of 

pushes. The implementation of a FORTRAN array assumes that the accessing sequence 

is sufficiently random to warrant such a general structure (or that the combined effects 

of the structure's accessing sequences is best implemented with such a general 

structure).    The implementation of lists presumes access will be to successive elements. 

If we move to more modern data structures such as sparse arrays, paged arrays, 
files described as data structures, etc., such assumptions become even more 

pronounced. In fact, the nature of accessors for such structures requires a 
specification of how the accessor is being used. For example, in a sparse array "A", 
distinct accessors must be used in the expressions: 

A[3,4,5] < 0 and A[3,4,5]«- 234. 

Thus the accessing sequence is important to a data struchir«? represemation. 

Going even farther, intended accessing sequences for the data structures arising in 

very complex programs such as operating systems, compilers and interpreters, become 

even more apparent from their conceptual (pictoral, verbal presentation) description. 

However, their description in terms of their implementation becomes complicated 

because of the inability to map different accessing sequences onto a group of elements 

to form a structure Instead, more primitive successor relationships must be imposed. 

In particular, either the relationships are imposed by a primitive pointer structure, or 

they are specified to a limited extent as a heirarchical entity and the program imposes 

the relationships whose specification is precluded by the enforcer of this hierarchy—be 
it a type mechanism or an applicative language. 

■ - ■- -    •--    ■■ 
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The coroutine facilities are the beginnings of a structure mPthanism which admits 

multiple (possibly complex) mappings onto t data structure. For example, a 

donDly-linked list may be used because it is Hjsirable to sequen.e through the list in 
either dirprton.    This may be expressed: 

■ prefix y :; <y; s gen>; 

s dblylnk :: s .   (emitn forward emitn reverse *) : 

[forwardt; reverse::<>/(prsfix collect *) val]; 

We may then define: 

DIR :: <IM, E; S; W; N> dblylnk 

Then reference to "DIR reverse" will cause the creation of the reversed sequence. 

Naturally, a compiler is free to determine the implementauon of such a structure, which 

might be a vector in this case, but would differ drastically if "dblylnk"^ argument is a 
magnetic tape file. 

In the same vein, the coroutine primitives can be used to study and express 
structures which are modified by insertion, delclion, and assignment. Knowledge of thr. 

use of functions such as insert and delete not only affects the implementation of a d:.(a 

structure, but our conceptualization of the structure as an array, string, list, etc. The 

major reason the coroutine primitives are helpful in this area if that in the initial basis 

such considerations may be expressed in terms of gentt, which may in turn be 
implemented using emit: 

s cone q :: <s gen; q gen> 

£ <s .    (emitn L *); q .   (emitn L *)> i [L] L 

tin light of the expanded emmitor-collector notation, this is an abbreviation for "forward 
:: collect *". 

ttActually, gen is not an essential function in the following sense: for a potentially 

unbounded sequence "s", a function "s genf i" can be defined which produces "s" with 

its "ith" element gened, which does not depend on gen itself.   See Appendix VIII. 
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r. gen * s G .   (emitn L •) • : [L] L 

where "L" is a unique label. 

For example, "insert", "delete", and "assign" may be expressed (in terms of a fixed 
sequence, V): 

i assign y :: i-1 head s cone <y> cone (i rest s); 

i insert y :: i-1 head I cone <y> cone (i-1 rest s); 

i delete       :: i-l head s cone (i rest s); 

where 

i rest s :: c .    d head (id *) cone (emitn L *)): [L] L 

We do not propose including those functions as primitives in the language. The basis to 

this point has demonstrated the i ).tcnt to which we do not need assignment. It is much 

more important thst the uses of insert tnd delete be approached in terms of the more 

general effect which they are jsed to accomplish. That is, we are not able to 

categorize the need for assignment yet; considerably more work is required in the 

direction of determining where we do not need it. 

Orthogonal Issues 

As we described in Chapter I, the language bösis we developed was a priori 

constrained to attempting to describe the nested-sequential representation subspace of 

interesting programming structures. Although the remainder of the (semantic 

representation; space may bo best described as the "nested parallel" space-with 

orthogonal elements of sets, association mechanisms, parallel operations, type 

mechanisms, ncme spaces, ete.-it would be inaccurate to say that nested sequential 

structures can be best described without the use of elements from this orthogonal 

space. For example, the selection gotoless construct case is semanticaly a parallel 

structure: retrieving an association from a set However, it is very desirable to use this 

construct to express sequential program elements. 

In the basis (as in LISP) this construct must be simulated by associating numbers 

with the elements of the set. Furthermore, the associated numbers are constrained to 

an initial sequence of the positive integers. Then we are able to count to the 

appropriate element by running through the sequence. However, it is actually 

semantically important that the distinction between a set and a sequence be delineated 

    —■  
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in future studies of the basis.    (The specification that a program or data is a sequence 
may indicate that selection of an element from the sequence is not germane.) 

Although the parallel space is conceptually orthogonal to the sequential spaco, many 

direct analogies from the language basis apply--even within the corecursive operators. 

Severs! examples may help to illustrate the point. In a discussion in Chapter II 

("cosequencing operators"), the distinction of the co.-.pply operator as a sequential 

operator was stressed, for the sequence could terminate at any point and could be 

unbounded. However, if the termination characteristics of the arguments to coappiy are 

known in advance, the coapplication can occur in parallel. In fact, the compilation 

considerations of Appendix IV a, e app-opnate in this domain, for we may even 

determine rather complex functions which can be applied in parallel using the same 
technique. 

At a more primitive level, the emit and collect operators discussed above are quite 

similar to operations which spawn processes and wait for processes, respectively. In 

fact, any time an emit is encountered, the computation can "fork" (until a collect is 

encountered); any time the collect operator is encountered, the computation can "join". 

Of course, the combined effects of parallel, sequential and nested representations is 
more complex than any in isolation. For example, sequences may conceptually change 

to sets for a parallel operation and back to sequential for output. More complex effects 

like the ability to map a sequence of nar,,cs onto a sequence of values to produce a set 

of associations obviously parallel the semantics of coapplication, but are currently 

outside its domain. The recursionless constructs are potentially parallel each time a 

sequence of recursions must occur—i.e. everything described using the coapp'ication 

operator has a potentially parallel implementation given the proper constraints on the 

sequences. Thus, in effect the basis even at this stage is amenable to parallel 

implementation considerations; however, it lacks the means to express explicitly parallel 

effects. This is a deficiency, for the knowledge of pa^a ■ vs. sequential 

implementation drastically affects the algorithm chosen (paralle version^ of good 

sequential algorithms may be less efficient than parallel versions ot inefficient 
sequential algorithms). 

The basis has been pushed to the point where orthogonal aspects (parallelism) 

should begin to be considered. For example, the recursionless constructs will be aided 

significantly by a type mechanism (for implicit termination) and an association 

mechanism. The lack of even a simple association mechanism for accumulated elements, 

for example, will probably thwart compilation efforts (or at least misdirect them) to 

some extent (see Appendix V for an example of how the lack of such a mechanism 

MI^^MBMaMMMfc 
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affects program concir.eness adversely). Many attempts to program in the basis are 

made more difficult than is necessary becaose of the lack of even simple association and 

type mechanisms; however, defining them would have clouded the iriue$ we wished to 
emphasize and would necessarily have been incomplete. 

We emphasize: leaving out even simple orthogonal basis tiements is an effective 

meanr for focussing on the issues at hand. We recommend this approach !o language 
design. 

Implementation issues 

One of the primary reasons the coroutine primitives have been introduced is to 

move one level clo-er to an implementation. In particular, if one is able to refer to the 

most recently emitted value as "lastn", we can program both "." and 7" In terms of the 
coroutine primitives: 

s .    q :: [al :: s; a2 :: q] : (collectn al (collectn a2) *); 
v / s :: [fs :: s] : <v (collectn fs) emitn ace; 

lastn ace (colloctn fs) emitn ace *> : [ace] ace 

Notice, then that the emittor set is effectively a declaration of new instances of the 

generator for the sequence to the right of the "::"s. This can normally be implemented 

very trivially in terms of a set of variables, a "program counter" and a pointer to the 
gen-jrating expression. 

The above considerations might lead to an interpretive implementation. However, 
such an implementation is not necessary; some compilation considerations are given in 

Appendix IV. Although the details of those considerations are not important here, the 
fact that "." and 7" are operators defined in the language is important. In particular, an 

extensible language definition might prefer a "kernel" definition, which has the coroutine 

primitives as primitive and from which one may build "." and 7". The compilation 

considerations of Appendix IV are based on compiler knowledge of these particular 

operators and their relationships. That is, by defining a language "basis", we define not 

only the primitive operators but some of the operators which can be extended from a 

kernel, but which will be of obvious utility both conceptually and in implementation 

considerations. To define a language from the basis, the same step should be taken: 

more operators must be defined in terms of the coroutine primitives and "." and 7" (and 

recursion and "corecursive operators"). Ultimately, we may be able to eliminate the 

primitive coroutine facilities and provide the most useful effects of coroutines, using 
"coroutineless" operators. 

■MI   i   ■■■>■ i   mi mm 



CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

Several new ideas have been presented in this dissertation; each has caused the 

coining of a new phrase such as "recursionless construct", "cosequencing operator", 

"factored termination", or "implicit generation". In this chapter, we examine the extent 

of innovation represented by these ideas. We then present an overview of the extent 

to which the basis reorients our concept of control and data structures. Next the 

limitations of the language basis are considered, followed by some directions for future 

research alcng these lines. Finally, we consider the basis in the context of the order of 
magnitude criterion, discussed in Chapter I. 

Innovation 

Below we review the new ideas independently, then discuss their combined effects: 

1.    A pointerless representation 

Explicit pointers in control or data structures are difficult to deal with in every 

approach to programming, principally because they vastly expand the relationships 

within and between data and control structures. That the gotoless constructs 

eliminate pointers from cor^rol structures suggested their potential utility for 

eliminating pointers from Jda structures as well. Although analogies hciween 

data structures and gotoless con'rol structures have been drawn previously 

[H0,1968], the new idea in our work is to apply the gotoless constructs to a 

particular representation (nested sequences) independent of the elements of the 

representation. We then allow elements to be either programs or data. The most 

obvious benefit of this approach is to allow the explicit sequential representation 

of data structures without requiring explicit pointers to represent nested elements 
and cycles in the structures. 

2.    Operators relating data and control 

AlthOLgh LISP 1.0 allows the interpretation of pairs as sequences (lists), programs 

must explicitly "pulse" lists by using the "car" anc "cdr" functions to impose a 

sequential interpretation. On the other hand. APL operators operate on 

structured data without explicit reference to the elements of the operand 

structures by imposing an element-by-element correspondence between operands. 

Such operators are defined to act in parrliel on the elements of their operands; 
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we sought sequential dnalogies that emphasized the exter,! to which an 

element-by-element identification between sequential operands could be made. 

The "cosequencmg" operators relate sequences in such a fashion, again 

independent of the elements of the representation. Thus, they tend to emphasize 

the extent to which data sequences follow the structure of the programs that use 
them, or equivalently, the extent to which control structures follow the data 
structures on which they operate. In essence, by providing a common interpreter 

for all structures in the language basis, the necessity to "pulse" data structures is 

lessened and operators which incorporate necessarily sequential effects are 
definable. 

3.     The partie :v hstahiiated function ("section") 

The ability to describe cosequenfial activity hinges on the partially instantiated 

function-a function with only part of its argument list specified. The "section" 

generalizes such diverse programming objects as machine language instructions, 

Bhss data structures, and Simula new activities, none of which can be strictly 

classified as program or data. Its contribution to com.ise program specification 

arises because it allows some specific information to be '^ound, while leaving other 

information unbounl The "section" has been defined previously as a 

programming language construct [LR]. Several languages have a similar notation 
for implicit iterative control (FORTRAN IV, APL, PL/1), but do not permit the 

"section" in its full generality. Hence, we include it here as "innovative" to 

emphasize its importance as an idea which should be incorporated directly into 
existing programming languages. 

4.     Infinite sequence generation 

The ability to aefine and operate on conceptually infinite sequences is the most 

obvious novelty in the language basis. Terminating a sequence external to its 

specification permits the effect. This idea is not new to data structures, where a 

pointer back k a previous element in a sequence may be interpreted by the 
program as a cycle.   However, such a mechanism in programs is newt. 

tits utility relies significantly on the ability of a progrc.m to "represent" its result as 
distinct from "constructing" its result. 

- —-•— —     -- 
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Programming experience with the basis has shown that the process of going 

from mathematical formulations of algorithms—in terms of polynomials, infinite 

teries, etc.--to algorithms in the basis is aided significantly by the ability to 

represent unbounded sequences. From a more formal mathematical viewpoint, this 

is the first language in which it is possible to deal with the 
recursively-ennumerable sets directly. 

5. Elimination of recursion 

Any recursive language which permits the definition of functionals—functions with 
functions as arguments—has the facility for expressing what we havu termed 

"recursionless constructs": operators which apply a function argument to other 

arguments recursively. For example, "maplist" in LISP applies a function to each 
of the elements of a list recursively. 

The innovation in this work is (1) in identifying that such functions as "maplist" 

eliminate the need for explicit recursion in some cases, (2) in postulating that a 

"covering set" of such operators may exist which would ultimately permit the 

removal of all explicit recursion from languages, and (3) in providing examples of 

some rather powerful "recursionless constructs" which can be used in extant 

higher level languages. Although it may not be necessary to remove recursion 

from languages, it is important that we identify how recursion is and should be 
used, and then designate that activity with a language construct. 

6. Correspondence between recursive data structure and control structure 

Although the "recursionless constructs" we propose do not "cover" the common 

uses of recursion completely, we were able to show that recursive analogs to the 

"cosequential" operators can be defined and integrated int) the language basis. 

The analogy is direct in the sense that "corecursive" operators were defined 

which emphasize the extent to which recursive data structures follow the 
recursive control structure of the functions which operate on them, or 

alternatively, the extent to which recursive functions follow the recursive data 

structures on which they opera'e. Although we were able to identify some quite 

powerful "corecursive operato s", we are not convinced that they are fully 

adequate for the expression of desirable recursive effects. However, the 
indications are strong that the apiroach will be fruitful. 
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7.    Effects of subroutines in applicative languages 

The demonstration that coroutines can exist in a langauage without an assignment 

statement is innovative. That is, coroutines may be defined as an association of a 

"state" and a computation in that state, functionally dependent on other 

coroutines. The basis provides a method for expressing independent states and a 
method for relating them functionally. By allowing the effects of coroutines in an 

applicative language, we preserve the important equivalence property of 
applicative languages: identical expressions in the same static context have the 
same value. 

None of the above ideas is extremely jignificant in isolation; the innovation of the 
basis derives principally from the ability of the above ideas in combination to reorient 

our approach to programming. In terms of traditional programming structures, the 
impact of th^ above ideas in combination is twofold: 

1. By extending the representation traditionally used for control 

structures to data structures, we exter.H the implicit data structure 

representation. Although these data structures can be imposed 

explicitly by programs using data pointers or array subscripts, their 

implicit representation is significant to p ogram conciseness. 

2. Traditional data structures are accessed element-by-element by 

programs. Thus, the explicit dynamic relationships between a program 

and its data structures are very primitive. By emphasizing the 

relationship of sequences of accesses o, data structures to the 

programs which perform the access, we have begun to structure the 

dynamic relationships between data ano program. The operators 

accomplishing this dynamic structure are thus able to replace the 

traditional mechanisms for accomplishing these effects—namely, 
subroutines. 

The primary languages which influenced the design of the basis were Bl;ss, APL, and 

LISP (in that order of importance). Their influence only becomes apparent after 

experience with programming in the oasis. Relationships to other languages are 

similarly masked because of the reorientation of programming style the basis demands. 

The reorientation is not solely dependent on the absence of an assignment operator, but 

rather involves the necessity to recast forrt ulations of programs to emphasize close 

correspondences between program and data s ructures.   One quickly becomes cognizant 

 - -  
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01 the extent to which the implementation of a sequence as a program or data depends 

on the context of the use of the sequence. Implicitly, one then recognizes the utility of 

specifying sequences independent of the context of their use. The basis forces one to 

re tructure his approach to programming to emphasize the commonality of data 

structures and control structures and their relationships. This 1«= the most 

important/innovative aspect of the basis, and it results from the combination of tee 
ideas above. 

Limitations» 

The limitations of the basis (.s developed in this thesis) arise from two areas: 

aspects of programming languages orthogonal to nested-sequential representation, and 

reformulation issues in terms of applicative languages and nested sequences in general. 

1.    The orthogonal elements of the basis 

The language basis was a priori constrained to describing interesting programming 
structures, through the use o; nested-sequential structures only. We may characterize 

the remainder of the (semantic representation) space as the "unordered" or "parallelism" 

space, with orthogonal elements; sets, association mechanisms, parallel Operations, type 

mechanisms, name spaces, etc. It is quite e'ear that the descnp.ion of even 

nested-sequential structures is aided by elements from this spacet. The basis has been 

pushed to the point where the interactions between parallelism and sequentiality should 
begin to be studied. 

The basis is presently able to simulate parallel activity, but simulation of effects 
obtained easily in another representation indicates poor design when that 

representation is naturally implementable. For example, simulating sub is unrealistic, if 

a sequence can be recast as a parallel construct amenable to random access. An 

apparent alternative is to seek parallel implementation techniques for activities which 

are described as sequential. This is not a reasonable approach, for the choice of 

parallel vs. sequential implementation drastically affects the algorithm chosen for any 

particular task-parallel versions of efficient sequential algorithms are frequently less 

tThe case gotoless construct is actually an element from this space, and is not present 
in the basis. 

■   ■ 
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efficient (of time) than parallel versions of inefficient sequential algorithms. 

To summarize, by leaving out considerations of parallel structure description, we 

have approached the extent to which sequential activity can be described solely in 

terms of itself. We do not suggest that parallel description is unimportant, even for 
sequential representations. 

2.    Limitations of nested-sequential representation 

Naturally, forced sequential or recursive simulation of rffects aciiieved best in a 
parallel representation--as through the use of sets or APL arrays-is not considered a 

limitation of this work. An adequate language basis must include the orthogonal 

elements mentioned above. Of more concern is the limitation of the pointerless 
representa'ion for obtaining effects normally obtained using pointers. 

We are faced with a problem in using the pointerless representation for data. 
Sometimes data must reflect a "real world" structure which may simply not be amenable 

to treatment as (potentially infinitely nested, cyclic) nested-sequences. Certain graphs 

cannot be adequately represented in this way, for example, and there are occasions 

when we do not have the freedom to impose the artificial gotoless representation. 

Although we have confidence in tl,a "gotoless" constructs in control contexts, based on 

both formal and practical experience, we await future research along the lines 

developed above to establish a similar empirical base for the gotoless constructs appliec 
to data structures. 

Although many problems arising from the lack of an assignment statement are 
properly part of the parallelism domain (random access, for example), we cannot yet 

claim that all uses of assignment in traditional languages are preferably reformulated in 

the basis. The coroutine primitives may be used to study the extent to which we can 

define constructs which give the effects of assignment such as modification of data 

structures. We f el that more work in discovering such coroutineles-; constructs is 
required before the necessity for assignment can be characterized effectively. 

Future Research 

Work of this nature is successful solely to the extent that it is able to stimulate 
future research: we have not in any sense attacked a problem and solved it, but have 

rather presented a set of ideas and indicated how they are interrelated. The work is 

so open-ended that we hesitiate to eliminate any subfield of computer science as a 

candidate for its further development.    However, there are three major areas which 
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should pay attention to the ideas presented herein: language design, formal 
programming studies (program verification, structured programming, and formal 

semantics specification), and implementation studies (optimization and machine design). 

The impact of this work on language design may take some time to emerge; the 

ideas in the basis are not easily factored from the basis in a manner directly applicable 

to improving existing languages. As we have mentioned, the "section" and the 

recursionless constructs may be useful in such a context, but it should be clear that 

existing languages must be sigrficanfly reformulated to incorporate most of the ideas in 
the basis. 

The principal stimulation this work can provide to language design is to demonstrate 

that a fundamental reformulation of languages may be in order. Although we have 

spent significant effort demonstrating the evolution of the elements of the basis from 

conventional concepts, the impact of the basis is that it is fundamentally different from 

other languages. Continued research along the hne of reasoning followed in the 

development of the basis is necessary: what other "coroutineless" constructs--both 

sequential and recursive--are desirable, what formulation of the parallelism space is 

appropriate, how do data structures, name spaces, type mechanisms, etc., impact the 

work? There are a large number of questions that only researchers with considerable 

programming experience can answer, dealing with the aptness of new constructs which 

should enter the basis. That is why the presentation has been so obviously informal 
and directed to the language design audience specifically. 

This work may have considerable impact as a formal semantics specification 
language (after it is extended and formalized). Formal semantics should be specified as 

concisely as possible. They should also require as little "conceptual interpretation" as 

possible. The only distinction between the best programming language and the best 

formal semantics Isnguagt should be that the semantics language is higher-level. It is 
considerably more dift.cult to specify how something should be built up than to 

demonstrate how it is a special case of something more general about which 
considerable knowledge has already been accumulated. 

The impact of the basis on program verification and other formal approaches to 

programming should be considered. The techniques of Gerhart [GR] in verification 

studies of APL are probably more appropriate in this context than those of King [K1J 

and Hoare [HO]. In particular, one does not arrive at algorithms in the basis as easily 

by modifying variables in an invariant relation as he does deriving the algorithm directly 
from a mathematical model involving sequences. (See Appendix IV for an example of 

this phenomenon.) In fact, it is almost as difficult to understand the transformation of E 
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traditional gotoless language algorithm into an algorithm in the basis, as it is to 

understand the analogous transformation from assembler language into a higher-lrvel 
language. 

Finally, implementation of the basis looks ext'-emely interesting as a future research 

effort. The primary language from which the basis was derived was Bliss—it is very 

likely that compilation of programs in the basis is not too difficult. Naturally, by 

interpreting a representation as opposed to interpreting programs or data, we open the 

area of internal representation of programs and data—by the same token, we unify the 

approach. We strongly suggest the approach of Hansen [HA] to implementing the basis, 

optimizing only when necessary and only to the extent necessary. The ultimate goal of 

every language designer is to produce a machine for which the language is the machine 
language. E'forts in machine design such as the STAR VI [HT] are very promising as a 
technology for such an implementation. 

Obviously, by defining an (unnamed) language basis, we are not interested in 
controlling the future research from »he basis (although we would certainly be 

interested in hearing of any such effort). We a, e particularly uninterested in defining 

a sequence of (upward compatible) anguages from the basis, but encourage any 

reformulation appropriate to the reseaxh at hand. It is a rare opportunity for those 

interested in optimization efforts to bo permitted to reorient a language to facilitate 
their effort—here is a basis for one. 

Order of Magnitude Improvement 

In Chapter 1 considerable attention was paid to finding rn order of magnitude 

improvement in general ourpose programming languages. Our only claim is that we feel 

a language derived from the basis may attain such a distinction. The lack of an 

association mechanism and other "parallelism space" desirables prevents a concrete 

demonstration of the claim. We can only summarize that the basis is presently 

significantly more concise than Algol for a larger class of problems than is APL, but it is 

not as concise as APL for the problems for which APL is particularly well-suited. This 

conciseness relies on the build-up of a considerable library of useful functions; 

however, we are far better able to rely on such a traditionally difficult entity because 

of our ability to represent infinite sequences and to deal wah programs and data 

uniformly. Implementation does not appear to be a difficult task-for some programs in 

the language basis, efficiency can be commensurate with that of current languages. 

In   the   last   twelve  years  of  language  design  research,  the  order-of-magnitude 

criterion has not  been met  for general purpose programming languages by pushing 



CONCLUSIONS AND FUTURE DIRECTIONS 119 

traditional language constructs. We feel it will only be met by making both the 

programmer and the implementation aware of higer-level relationships between program 

and data structures, and by emphasizing these relationships with language constructs 
facilitating their concise expression and efficient compilation. Expressing such 

relationships demands that we step outside traditional language structure;.. We believe 
that the basis represents a significant step in this direction. 

.. , _. 
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APPENDIX I 

INSTANTIATION, COMPOSITION AND EVALUATION NOTES 

Instantiation rule: For b a binary operator and x an operand: 

a. x b stands for the operator defined by: 

none op y :: x b y; 

b. b x stands for the operator defined by: 

y Op :; y b x; 

c. x b y stands for the instantiation: x (b y). 

Composition   rule:    If   b,  I   and   r   are   binary,  left-unary,  and   right-unary   operators, 
respectively: 

a. b I stands for the binary operator defined by: 

X op y :: x b (I y); 

b. r b stands for the binary operator defined by: 

x op y :: x r b y; 

c. ri ri stanas for the right-unary operator defined by: 

x op :: x rj r2i 

d. Ii I2 stands for the left-unary operator defined by: 

none op y :: Ij (l2 y). 

The   resulting   operators   are   then   subject   to  the  composition   rules.     No  other 
combinaiion of operators is a composition (see next section). 

■ !■ !■    Ml  M    IIIM   I        I -  - 
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Extensions to the composition rule: 

The composit;on rules above expliotly disallow composmons of the forms: "b r". "I 

intPrn    l ;     '    r     and     b    b"-      In   ^ct,   the   f.rst   two   forms    have   reasonable 

r:::: t" bnoamejy th:i,he unary operator be appiied ^ ^ o^zzi parameters be bound as though the unary operator were not present     That is   tZ 
above composition rules could be extended to perrr.t: '     * 

e. b r stands for the binary operator defined by: 

x Op y :: x b y r; 

f. I b stands for the binary operator defined by: 

x Op y :: I (x b y). 

The   forms   "r   I"   "I   r"  anri   "u   u- u  , 
/ b   b    crjld  be  used  to   allow  parameters  to  ent^r  Hi. e^o* ,rcm e,ther side, bu, ,s rejected as nonintu|ljve ^P ^^^-s ****J* 

Impact of evaluation function on composition rules 

Reference is made in Chapter II to the amb.guity of permitting: 

+* == <+i +. .> 

but not allowing: 

+ (mul 3). 

operator can be apphed to another operator directly. 

  ■'-• ■-• 
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"patterned expansion" of the functions has beun used to convey the intended choice. 

Quote rules always cause problems when several levclr of quoting occur. We see no 
solution to this problem, but do make the followirv, "noteb": 

F'ermitting the ability  to quote an arsumont at the operator definiton site  is 

desirable.    For example, assume   precemimg an argument name in an operator 

definition (to the left of the "::") indicate: that whon the operator is called, the 

corresponding actual parameter may be an unevaluated function. Assume also 

that "" in an expression inhibits evaluation of i function, and indicates that the 

argument is to be considered "data"~i e directs the evaluation function to apply 

the function instead of compose the two. Then the distributed usage of the 

function throughout the program does not require that the argument-function be 
quoted in each instance.   I.e., 

'a f b :: b .   (a*) 

does not require 

(..> f bl ...   '-f b2...   'mulf b3...   etc.) 

but rather permits the same effect using 

(...    + f bl ...   -f b2...   mulf b3 ...   etc.). 

The designers of LISP recognized this whrn defining "setq" for example, but did 
not permit the user to define such functions. 

2. The ability of an operator to quote its argument may be inferred from its usage 

in its defining expression (by an interpreter or compiler). In the example above, 

given that V can quote its argument, it is redundant to specify the fact explicitly 
using the "'•'. 

3. The V is already a form of quote operator (see Chapter III; A rocursiv« "*".) 

/ 
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APPF.NDIX II 

NOTES ON THE MULTIVALUED-LOGIC OPERATORS 

In Chapter II it was indicated that the operators then, else and excludes have 

somewhat anomalous properties. These stem from the interpretation of any non-nil 

value as "true" and nil as "false". In particular, if D is the (a) domain of the logic 

operators, and 0 the set of such operators (called connectives), then for no o in 0 is 
there an element t in D -  {nil} such that: nil o nil = t. 

We first consider such a logic for the domain {0,1}, where "0" is an abbreviation for 

nil. The set of connectives for this domain is c ied 0'; they are ennumerated in Table 
AII.l below. 

o' in O't null        and *-y lid y-x rid xor        or 

0 o r\ 

0 1 0 0 0 0 
- u    

1 1 1 1 
1 0 0 0 1 1 0 0 1 1 
i 1 c i 0 1 0 1 0 1 

TABLE AII.l: Restricted Boolean Connectives, 0'. 

Notice the absence of the "eAotic" connectives such tu nand and nor. 

We can now define the logic system of the basis as the set of binary mappings o in 
0 from D x D into D subject to the following constraints: 

1. For all o in 0, ril o nil «= nil; 

2. For all x, y in D, x o y is in {nil, x, y}; 

tlid is the binary left identity function, rid is the binary right identity function, and the 
operator "-" is actually "monus". 

I_a>^a>l_l^__ 
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3.    For each o in 0, there must be an o' in 0' such that the mapping b defined by 

b(xM if x is in D - {nil} 
-0 if x = nil, 

is a hjmomorphism.   That is: 

b(x o yv = b(x) o' b(y). 

These latter two constraints remove domain dependencies from the connectives. In 

particular, (2) eliminates a connective which maps (x.nil) onto y, and (3) eliminates 
connecti-es which map (x.nil) onto x but (y.nil) onto nil (for x,y in D-{nil}). The table 
below represents all such connectivest (with "0" substituted for nil): 

x       y Ccnr.octivcs 

0       y 0 0 0 0 0 0 y y y y y      y 
x       0 0 0 0 X X X 0 0 0 X X            X 
x       y 0 X y 0 X y 0 X y 0 x         y 

Ref.  « 1 2 3 4 5 6 7 8 9 10 11       12 
Partitions 

null x-y y-x xor 
namest+ and !id rid or 

Converses 1 3 2 7 i 8 4 6 5 10 12     11 

TABLE AII.2: "Language Basis" connectives, 0. 

tTo be precise we would have to define a homomorphism from an arbitrary D onto fx v 
nil}, etc. ' /' 

ttThe homomorphism b induces a partition on 0. In particular, o and p in 0 are in the 
same partition iff for all x, y in D, b(x o y) «b(x p y). The corresponding element of 0* 
is given here as a name for the partition. 

■  ■■   -■   ■■-—■— 
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Completeness Properties 

This logic system has some rather interesting "completeness properties".    A set of 
-nnect, S( wi|| be cal|ed comp|ete )ff ^ ^^ c ^ W ^ ^A^of 

well formed expression in terms of K, y and the elements of S. 

The properties of interest her e are: 

1. {excludes, else} ,s a complete set of connectives; 

2. There is no complete unitary set of connectives; 

3. {excludes, then} is not a complete set of connectives. 

In Chapter II the correspondences between excludes and not. then and and. and els. 

and or were made. Thus, the property (2) and (3) may seem somewh. startling in 
terms of regular Boolean logic.   The proofs of these properties are sketched below 

Proof Sketches 

1.     {excludes, else} is a complete set of connectives. 

[LSSI ^'r ^^ ^ ^ "^ ^^^ 0UrSelVeS W,,h COnverses Simultaneously 
substitute   x  for  y  and  y  for  x   in  an  express,on to obtain  the  converse   of   the 

onnective   which   the   expression   defines).     Aiso   note   that   the left   and   ngh 
.dent,ties,    d and r.d, respe lively, can ba obtained directly (e.g. for  "exp lid y" 

-bstitute  "exp").    Hence, we need only construct the connectives with re e ence 
numbers (in Table AIi.2) of 1, 3, 6 and 10: ererence 

x (1) y = x excludes x; 

x (3) y = (x excludes y) excludes y; 

x (6) y = ((x excludes y) excludes y) else x; 

x (10) y = (y excludes x) else (x excludes y). 

QED 

There is no complete unitary set of connectives. 

CLP^V     ! uS' ard aSSUme the Set ,S {C}'    Then the corresponding Boolean 
connective c' must be such that {c'} is a complete set for 0' (C is the label of the 

su^Toio*        C IS 3 member ,n Table AII•2,•   In ^ ,here iS n0 COmp,ete Unita- 

■ MM. 
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None of the following sets is complete: | - , null, lid, rid, and}, {xor, null, lid, rid}, 
{or}. Hence, no proper subset of these ^ots is complete. Since each of the 

connectives appears in at least one of theM sets.no unitary set is complete. (The 
sets arise from generating all expression«; involving "-", xor, and or, respectively.) 
Hence, th?re is no complete unitary subset of 0. 

QED 

3.    The set {then, excludes} is not complete. 

Pf.    The proof of property 1 expresses then m terms of excludes (alc.ie).   This set 

is complete, therefore, iff {excludes} is complete, which it is not, by property 2. 

QED 

s 

-  —  - ■--■        -   -         - - — -    - ■ 



/^/ 

APPENDIX III 

USEFUL FUNCTIONS DEFINED IN THE TEXT 

Note: many of these functions can be simplified to be defined in terms of other useful, 

rr^ore primitive functions. We do not propose this set as a well-integrated set of 

functions, but include the list merely for reference from within the text. If an 

operator is redefined, each version appears here, in the order of redefinition in 

the text. Most operators which are used only m a very local context in the text 
are not redefined here. 

Function Page Defined 

and  :: then 

x  alternate y  :: <x; y> gen * 

M  Bmask  :: M . (controls (1*) *) 

35 

36 

54 

s  cone  p  :: <s gen; p gen> 
s controls q 

s controls q 

s controls q 

s controls q 

M column i  : 

;: s . (rid *) . q 

u s length It (q length) excludes (s controls q) 
;: s controls (q lengthge (s length)) 

: s . (rid *) . (q cone (nil *)) 
M . (sub i *) 

s eo  :: s. (<emitn odd;emitn even> gen *) : [even; odd] 
x exch  :: <x emit; collect> val 

M fromnil :: M . (. (else NIL *) *) 

M f-omNIL :: M . (. ( ne NIL *) *) 
n  factorial   ::  l/(mul * . (n pos)) val 

n head s :: n gt 0 then (n pos controls s) else <> 

x  id  :: x 

u  ip  v   :: u rowmul v sigma 

s  interleave p  :: [s::s; p::p] : <collect s; collect p> gen 

34 
39 
44 
44 
45 
51 

97 
103 

53 
54 
59 

42 

27 
51 
99 
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s  length  :: s controls  P val else 0 

s  lengthge  i   :: i pos controls s length =  1  then s 

"   max  j  :: i  ge j else j 

M MM N :: M . (rM N *) 
s  mask  :: s . (thenf emit *) 

none  not  x  :: x excludes true 

s  nonempty  :: s . (exs ♦) 
v  notempties  :: v . (txs *) val then v 
x  null  :: <> gen 

or 

k odd 
else 

k mod 2 ■ 1 

P " 0/(+l*) 
n pos :: P while ( le n) 
s prefix y :: <y> cone s 

s  prefix  y  :: <y; s  gen> 

x rid y :: y 

s rplus p :: 

u rowmul v 

r rM M :: r 

s reverse :: 
fs reduce s 

fs reduce s 

fs reduce s 

s .(+*). p 
" u . (mul *) . v 

ip * . (M transpose) 
<>/ (prefix * . s) val 

:: fs functionzero / (fs 
:: / (fs . s) 

- fs  1st / (fs tail . s) 

s) 

s  sub i  :: i  head s val 

u sigma  :: 0 / (+* . u) val 

M transpose : 

M transpose : 

M transpose : 

M transpose :: 
list tail :: list 

x thenf f  :: x 

M column * . P 

M column *. P while notempties 
M fromnil transpose fromNIL 

M Bmask transpose controls (M column ♦. P) 
. <null; id * gen> 
then (x f) 

44 
44 

48 
51 
95 

35 
40 
52 
63 

35 
57 

41 
42 
57 
107 

27 
39 
51 
51 
57 
77 
78 
78 

43 
51 

51 
52 
54 

x whenf f :: x f then x 
(Appendix V) 
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s   while  f  :: s  .  (f  exs ») 

list   1st   ::  list  .  <id> val 

list   2nd  :: list . <null; id> val 

list  3rd  :: list . <nulli null; id> val 

42 

63 

vAppendix V) 

(Appendix V) 
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APPENDIX IV 

COMPILING EXPRESSIONS IN THE INITIAL BASIS 

To indicate that we are indeed very BtrktiHi about the basis as a realistic approach 

to programming, the following section indic«t65 how Lompilation is possible for some 

expressions in the basis. A fairly complex cxnrple ic worked out in considerable detail, 

producing a very efficient program (which could seem unlikely to one who is seeing the 
basis for the first time). 

To illustrate, Knuth's "Algorithm A" for computing x raised to the power n (originally 

Legendre's algorithm) [KN, pp. 399-400] is compiled. A few words about the algorithm 

and formulation in the basis are in order before the compilation process is indicated. 

The algorithm essentially arises from the equivalence: (using "T" to indicate 
exponentiation here) 

x T n « x T (dx + 2 d: + 4 ds + ...   + (2T(i-l)) d 

-(« T dx) ((x T 2) T dz)...   ((x T (2 I U-U)M di) 

where the "dj" are the coefficients in the binary expansion of "n". 

When dj=0, the term in the product above is "1".   That is, 

(x T (2 T k)) t 0 = 1 

and 

(x t (2 t k)) T 1 = x T (2 t k). 

Thus, the algorithm simply involves computing factors involving successive squares of 
"x" 

V are 
To represent the algorithm in the basis, we first note that the squared powers of 

x squared :: x mul x; 

x power2    :: <x; x/ (squared *) gen> MI 

The binary coefficients in right-to-left order can be obtained: 

 ._ _ 
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n  bincoef  n <ni n/(div 2 *) gen> while (ne 0) . (mod 2       ♦) 

The factors to be multiplied can be written: 

x  factor;   n :: n bincoef . (=0 then  1   else *) . (x power2) 

Thus, the algorithm for "xTn" can be written: 

v tothe n ::  l/(mul * . (x factors n» val 

[2] 

[3] 

[4] 

In compilmg programs in the mtial bas,s we deal w,th three separate program 

representations; the source, an intermediate representation which we call "generator 
expressions" and the target language, here a dialect of Bliss [WU,1972]. 

Generator expressions will be objects from which we can "collect" a value The 
objects will be triples: 

G = [[ L; D; E ]]. 

(The double brackets are used to avoid confusion with the coroutine set notation of 

Chapter IV.) A generator is such that a program counter or sequence position counter 
can be associated with it.   The portions of the generator are: 

UG) = label set; 

D(G) = declaration/ initialization set; 
E(G) = generating expression. 

The label set arises from escapes m sequences expressions. In translating from the 

basis to generator notation, several levels of sequencing operations will be merged-i e 

the escaped sequence would become ambiguous unless we tied it to a unique label The* 
declaration sets arise from "accumulate" operations where a temporary variable must bo 

declared to accumulate the result. The expressions. E. will be quite similar to 

expressions ,n the basis defined solely in terms of the primitive functions, except they 

Will mvolve the declared variables of the "declaration/initialization set", and assignment. 

We will be concerned with when we can translate a generator expression into either 

a subroutme with own variables-i.e. a coroutme-and when we are able to convert 

the expression to a closed function with local variables.   Below we introduce rules used 

  



' '   ■ ' ■   ' 

APPENDIX  IV: COMPILING EXPRESSIONS IN THE INITIAL BASIS 132 

to transform sequence expressions from the Initial basis into the intermediate generator 
notation from which either subroutines or functions can be compiled. 

The » ==>[[ {L};; cycle e']] 

where L is a unique label, and •' has all exs expressions redefined as «xsn L 
L need only be defined when such an exit exists in e. 

12: [[ L; D; cycle E]] .    [[ L'; D'; cycle E']] —> 

[[ L union L'; D union D"; cycle (E [E,))]] 

T3: x / [[ L; D; cycle E]] ==> 

[[ L; D union {declare v = x}; cycle (v<-v(E))]] 

where v is a unique name, not in the program. 

T4: ([[ L; D; E]]) --> [[ L; D; (E)]] 

The transformations are to be applied "inside out" and "left to npht" to expressions in 

the initial basis. They transform primitive functions (nrithmetic, relational, conditional) 
and expressions composed only of primitive functions intact. 

We now consider the compilation of the "xTn" algorithm above. However, to 

circumvent issues involving the gen operator, we redefine "powe^" and "bincoef" in the 
following somewhat artificial way+: 

x  power2  :: x sqrt  / (squared *) 
x  bincoef  ::  2  mul n / (div 2 *) 

while (ne 0).   (mod 2 *) 

[5] 

[6] 

tNote, we can replace <v; v/(f*) gen> by Mv (f inverse)/ (f*)" when T has a unique 

inverse. In general, we can replace it by: H<IiV>/(2nd/<id;'>*).(lst*)". This latter 

expression corresponds to the normal nasty situation where a side-effect must occur, 

but the previous value of the changed variable is desired after the assignment. 

i   nn nimii■  
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We begin by applying the transformations above to the subfunctions of [4]. 

x p  wer2 :: x &qrt/(squared*) 

Tl  ==> x 5qrt/[t;;cycle squared]] 

T3   ==>  [[;   [declare  Z=x  sqrt}; cycle (Z^Z(5quared))]] [7] 

n bincoef :: 2 mul n/(div 2*).((no 0) exs*).{mod 2*) 

Tl ==> 2 mul n/[[;;cycle div 2]].(ne 0 exs*).(mod 2*) 

T3 ==> [[; {declare N=2 mul n}; cycle (N«-N(div 2))]]. 

(ne 0 exs *),(mod 2 *) 

Tl ==> [[; {declare N=2 mul n}; cycle (N*-N(div 2))]]. 

[[{DONEI;; cycle (ne 0 exsn DONE)]] .(mod 2 *) 

Tl ==> [[; {declare N=2 mul n}; cycle (N<-N(div 2))]]. 

[[{DONE}» cycle (ne 0 exsn DONE)]] . 
[[;; cycle (mod 2 *)]] 

T2 ■-> [[{DONE}; {declare N=2 mul n}; 

cycle ((N-N(div 2)) (ne 0 exsn DONE))]]. 

[[;; cycle (mod 2 *)]] 

T2 ==> [[{DONE}; {declare N=2 mul n}; 

cycle ( ((N-N(div 1)) (ne 0 exsn DONE)) (mod 2) )]] [8] 

Note also that we can transform "(=0 then 1 else *)" by "Tl" to: 

[[;;cycle (=0  then  1  else)]] 

We can then do "factors" using [7], [8], and [9]: 

x factors n :: [8].   [9].    [7] 

T2 ==> [[{DONE}; [declare N=2 mul n}; 

cycle ( ( ((N^N(div 2)) (ne 0 exsn DONE)) (mod 2)) 

(-0 then 1 else) )1]. 

[[; {declare Z=x sqrt}; cycle (Z«-Z(squared))]] 

T2 ==> [[ {done}; 

{declare n=2 mul n; declare Z=x sqrt}; 

cycle (((((N»-N(div 2))(ne 0 exsn DONE))(mod 2)) 

[9] 

__11^__— ■   
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(=0 then 1 else)) 

(Z«-Z(squared)) )] rjQ-, 

Now, using [10] in [4] we can transform the exponentiation function: 

x tothe n :: l/(mul * .   [10]) val 

Tl ==> !/([[;; cycle mul]] .    [10]) val 
JAJ2 ==> l/[[ {00NE}j 

{declare n=2 mul n; declare Z=x sqrt}; 

cycle (ml ((({(N^N(div 2))(ne 0 exsn DONE))(mod 2)) 
(=0 then 1 else)) 

(Z«-Z(5quared)) )]] val 
T3 ==> [[ {DONE}; 

■declare n=2 mul n; declare Z-x sqrt; declare Y=l}; 

cycle (Y^Y( (mul (((((N«-N(div DKne 0 exsn DONE)) 
(mod 2))(=0 then 1 else)) 

(Z^Z(squarcd)) ) )]] val fj|i 

Using the mstantiat.on rules of Appendix I, we can remove pa: enfheses to obtain: 

x tothe n :: [[ {DONE}; 

{declare N=2 mul n; declare Z=x sqrt; declare Y=l}; 
cycle Y*-Y mul 

(«N<-N div 2) ne 0 exsn DONE mod 2)=0 
then 1 

else (ZMZ squared))) ]] val n2] 

The expression inside the cycle should look at least reasonably close to a "real- 

program for "x tothe n". (The names of the vanables are consistent with those used in 

Knuths vers.on of the algorithm.) Notice that the computation sequence (cycled 

expression) could be "pulsed" if there were occas.on to do so. by producing a program 

from the generator expression translating declare into own in Bliss or Algol However 

the val operation mdicates that the vanables of the generator are temporary in nature' 

and hence, that loe declares can be local declarations in Bliss. We can convert the 
above program into a Bliss program almost trivially: 

  -   ■   
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routine tothe(x,n) = 
begin 

local N=2 * .n, Z=sqrl(.x)I Y=l; 
label DONE; 

DONE : while true do 
Y-.y * if 

(if (N*-.N/2) eq 0 

then leave DONE 

else .N mod 2 eq 0) 
then 1 

else {1*-.I * .2); 
.Y 

end; 

[Note: in Bliss, "." takes the contents from a machine address, which declarations 

associate with declared variables. The leave expression escapes from the expression 

labelled by its argument. The value of a block is the last expression in the block-VT 
in this case.] 

Although this expression is not optimal, normal optimization will transform the 
multiplication so it only occurs on odd values of "N". Bliss will even do a right shift for 
the divide and a mask operation for the test. 

The expressions for the initial values of X and Z are discomforting. We claim 

(without proof) that they could be hanndled in a better way by using the somewhat 

obscure formulation in the footnote above, or, in fact, by the proper considerations of 
gen. 

We will not present any more compilation issues here: the above discussion is 

intended to indite that we do not feel that the basis is even as unrealistic as LISP in 

terms of compilinj efficient programs. Some efficient programs can be compiled with an 
almost trivial amount of optimization effort. 

Our considerations are far from complete; the mechanism above may have to be 

modified drastically to accomodate the other operations in the basis. In addition, we 

have ignored issues of parameter substitution mechanisms (used implicitly in the 

transformed expression above), data structure creation, nested loops, etc Such 

considerations should await a formalization of the basis: both formalization and 
compilation constitute significant research efforts in themselves. 



APPENDIX  IVs COMPILING EXPRESSIONS IN THE INITIAL BASIS 136 

However, ine point is extremely important: the compilation considerations above are 

possible only because "." and "/" have been identified as primitive coroutineless 

constructs, hid they been extended from "collect" and "emit" as is suggested in 

Chapter IV, opti nizers might have missed the transformations above and not compiled as 

efficient programs. The analogy is direct between "coroutineless" and "gotoless" 

programs: each presents a set of constructs whose interrelationships can be considered 

by implementers to produce well optimized programs. If the constructs are not 

present, tne optimizer is unable to confine his attention to the most frequent functional 

usage of the goto or coroutine call. He will probably not be able to focus on the 

specific cases above because of the interference of the uses of the primitive constructs. 

That is, he must recognize the use of "." and "/" by "pattern match", insure other 
coroutine calls do not interfere, and then apply the transformations. 

-  - -        —  -1——^^——._^^J———^- 
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APPENDIX V 

COMPUTATIONAL COMPLETENESS OF THE INITIAL BASIS 

Computability 

In order fo prove that the initial basis (described in Chapter II) is computationally 
complete, we show that an arbitrary Turing Machine can be implemented using the basis. 
Thus, in particular, a universal Turing Machine can be simulated, and the partial 

recurs.ve functions are computable in the basis. The terminology follows Hopcroft and 
Ullman [HU]. 

A Turing Machine is a finite state device with a semi-infinite tape on which symbols 
from an alphabet, GAMMA, can be written and from which they can be read. The set of 

states will be called, K. A Turing Machine instruction, called a "move", determines the 
next configuration of the machine by specifying: 

1      The next state; 

2. The  symbol  to  be  written on the current  position of the tape (under  the 
read/write head); 

3. The direction the tape must be moved-left, L, or right, R. 

A move depends on the current symbol under the tape head and the current state. 
A program (set of moves) must be specified by a function, 

delta: K x GAMMA --> K x (GAMMA-{B}) x {L, R} 

where B (blank) is the symbol in any tape position not yet scanned (read) by the 

machine. A computation proceeds one move at a time, unti, a state in the final state set 

F (a subset of K), is reached. The non-blank portion of the tape is the result of the 
computation. 

Initially, a machine is started in state q0, with a sequence of symbols AL A2       A 

on the tape.    The head .s positioned at the leftmost symbol (Aj) and the remainder of 
the tape is blank (all Bs). 

To implement a Turing Machine in the basis, the function delta, the initial state q0, 
the final state set F and the argument sequence A must be provided.   (These latter two 

■ --   
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sets are specified as sequences in the basis with the same names--i.e. F and A.) We 

define an mtantaneous description of the computation (similar to Hopcroft and Ullman's 
"TM configuration") as the following sequence: 

Current state—"q"j 

<Tape to the left of the head, reversed--"LH"; 
Symbol under the head--"h"; 

Tape to the right of the head-'RH"» 

Thus, if the machine is in ^tate "b", the tape has the symbols "xyzpqBB...", and the 
head is positioned on "z", the instantaneous description is: 

<b; «y; x>; z; <p; q; B; B; ...»> 

The various fields of an instantaneous description, ID, may be accessed by the functions 
defineH Lelow: 

q :: ltt| h :: 2nd  1st; LH :; 2nd 2nd; RH ;: 2nd 3rd, 

The function delta's result is formattedt.ii': 

q delta g == 

<next state-V; written symbol--"g""; head direction—"LorR"> 

where q is the current state and g is the symbol under the nead.    Accessors for values 
of this function are defined: 

q' :: 1st; g' :: 2nd; LorR :: 3rd. 

nechmcally we must show the basis is able to express arbitrary "delta" functions. By 

naming the states with posit ve integers, and a GAMMA of the decimal digits (union {B}), 

an array of triples in the above format may be simply selected to produce the result of 
delta. 

ttWe prove tnat the initial basis including an operator definition facility is complete. 

This differs from lambda-expressions [CH], for example, where a universal function may 
be expressed as a closed expression in the system. 

I ir       ii  i i  ■ ■ ■ - ..-.,■■ ...-■■_  ,  
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The implementation essentially relies on a two stack machine simulation of the TM 

computation. A stack is stored as a sequence, the first element of which is its "top". 
The relevant operations on stacks are: 

stack push x :: <x> cone stack; 

stack pop :: stack tail; 

stack top :: stack 1st. 

A "move" function which transforms one instantaneous description to the next may 
then be written: 

ID move :: ID q delta (ID h) MOVE ID 

where MOVE is defined: 

D MOVE ID :: 

<Dq'; 

ID * .    (D LorR = "L" 

then <LH pop; LH top; RH push (D |> 

else <LH push (D g'); RH top; RH pop>)> 

The computation sequence may then be described as: 

COMP :: <q0; «>; <A 1st else B>; A tail cone (B *)» / (move *) 

However,   the   above   computation   does   not   torminate.     To   obtain   the   finite 

computation sequence (when there is one), the following auxilliary functions are useful: 

x isnotin s :: s .   (= x txs *) val excludes x; 
x whenf f :: x f then x. 

The terminating computation sequence is then simply: 

COMP' :: COMP while (whenf (q itnotin F» 

To obtain the value of the computation we simply decode the last ID in COMP': 

ID decode :: ID LH reverse cone <ID g> cone (ID (vH) while (ne B); 
TMCOMP :: COMP' val decode. 

Q.E.D. 
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Oiagonalization 

Perhaps a more interesting effect in the basis is the ability to deal with recursively 

ennumerable sets directly. To demonstrate, we express a function whose value is the 
dovetailed computation of all TM computations on a blank tape. 

We postulate a generator for "deltas" which generates all 2-dimensional arrays of 

triples conforming to the rule that the computation begin in state "1" (qO ■ 1) and 

terminate in state "2" (F = {2}), if it terminates. (Obviously, there is no loss of 

generality here.) Call the generator for the deltas, DEtTA-assume each element of 

DELTA is a two-dimensional array of triples such that the first subscript (the rows) 

correspond to states, and the second subscript corresponds to tape symbols from a 

fixed alphabet, the decima1 digits. We interpret "0" as "B" and disallow it from being 
written. 

Then for DEL an element of DELTA, we define: 

args del DEL :; DEL sub (args 1st) sub (args 2nd) 

(where args is a two element sequence <current state, current symbol>). The functional 

(del DEL) then represents a valid "delta" with its arguments encoded. That is, we can 
redefine "move" as: 

ID move DEL :: <1D q; ID h> del DEL MOVE ID 

In particular, we can now define the (blank tape) computation sequence of a Turing 
Machine .n DELTA as: 

BTC DEL :: <1, «>; 0; 0*»/ (move DEL*) 
while (whenf (q ne 2)) 

vhere MOVE is as a'jove. 

All blank tape computations can then be described as: 

ALL3TC :: BTC * .   DELTA 

Obviously, we must be rather careful how we aciess this monster. We cannot ask for 

the value of the first computation and hope to do anything with the second. 

Frequently,  such  sequences  are  considered, however, and  "dovetailing"  is  used  to 

  ____ .... — _.. ,—.—.  . .. ._.. .._ - 
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describe a desired effect.    If we arrange the computations in the following way, it wil 
be clear how such a process works: 

<<Clil C12; C13; C14; ... >; 

<nilj C2ii C22; C23J - >; 
<nil; nil; CfU 032; ... >; 

The empty elements have been introduced as "place holders" for the dovetailing 
process. Dovetailing involves taking the columns of the doubly infinite array described 

above (ALLBTC), until an empty element is encountered in the column. Equivalently, we 

can take one element from column 1, 2 elements from column ?, 3 from 3, etc. Thus, we 
can define a dovetail function for any two dimensional infinite array as: 

none convert A :: <0; P gen> .   (head (nil *) *).   (cone *) .    A 

A DOVETAIL :: P .   (head *).   (convert A) 

(remember transpose works for such arrays; must check that "0 head s =- <>") 

The dovetailed blank tape computations are then: 

ALLBTC DOVETAIL 

Noticing that the dovetailed array's rows increase in length for each successive row, 

and that nil will be the value after a computation halts, we c^n ennumerate the index in 

DELTA of the machines that halt (redundantly, here) by "HALTING" below: 

row halt :: row .   (excludes *).   P mask 

HALTING :: ALBTC DOVETAIL .   (halt gen *) 

 ' -■'- — 
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COROUTINE CONTROL EXAMPLE 

Below, the evaluation sequence for the coroutine expression [IV, 12] is presented. The 

symbol f represents the current sequencer position in each of the coroutines. The 

"«■• indicates thr current "program counter", the print at which control actually resides 

(see [IV, 11] ff). Assume control is initiated at V, as would occur if that sequence 
were explicitly selected. 

<collectn a emitn b; collectn b emitn a> * : 

[a :: <3; <1 emit; collect> val; 4; <2 emit; collect> val>i 

b :: <« <100il01> sub collect emit; <2C0i201> sub collect emit>] 

<collectn a emitn b; collectn b emitn a> * i 

[a :: <3; <1 emit, collect> val; 4; <2 emit; collect val>; 

b :: «100;101> sub « collect emit; <200;201> sub collect emit>] 

< » collectn a emitn b; col'ectn b emitn a> * i 

[a :: <3; <1 emit; colloct> val; 4; <2 emit; collect> val>; 

b :; < <100;10i> sub 7 collect emit; <200;201> sub collect emil>] 

<collectn % a emitn b; collectn b emitn a> * : 

[a :: <« 3; <1 emit; collect> val; 4; <2 emit; collect> val>; 

b :: < <100,101> sub 7 collect emit; <200;201> sub collect emit>] 

<collectn 7 a emitn b; collectn b emitn a> * ; 

[a ;: <3; <1 i emit; collect> val; 4; <2 emit; collect> val>; 

b :r < <100;101> sub 7 collect emit; <200;201> sub collect emit>] 

<collectn a « (= 1) emitn b; collectn b emitn a> * : 

[a :: <3; <1 7; collect> val; 4; <2 emit; collect> val>; 

b :: < <100;101> sub 7 collect emit; <200;201> sub collect emit>] 

<collectn a emitn i b; collectn b emitn a> * : 

[a :: <3; <1 7 emit; collect> val; 4; <2 emit; collect> val>; 

b :: < <100;101> sub 7 collect emit; <20ü;201> sub collect emit>] 

<collectn a emitn 7 b; collectn b emitn a> * : 

[a :: <3; <1 7 emit; collect> val; 4; <2 emit; collect> val>; 

amamt^^Mlt^ 
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b :: < <100il01> sub collect « (= 1) emit; <200i201> sub collect emit>] 

<collectn a emitn 2 b; collectn b emitn a> * : 

[a :: <3; <1 7 emit; collect> val; 4; <2 emit; collect> val>; 

b :: <100 /; <200;201> sub collect emit>] 

<collectn a emitn b; collectn b ■ (= 100) emitn a> * : 

[a :: <3i <1 7 emit; collect> val; 4| <2 emit; collect> val>; 

b :: <100 7; <200;201> sub colled emit>] 

<collectn a emitn b; collectn b emitn » (= 100) a> * i 

[a :: <3; <1  / emit; collect> val; 4, <2 emit; collect> val>; 
b :: <100 7; <200;201> sub collect emit>] 

<collectn a emitn b; collectn b emitn 7 (= 100) a> * : 

[a :: <3; <1 emit; collect ■ (= 100)> val; 4i <2 emit; collect> val>; 
b :: <100 7; <200;201> sub collect emit>] 

<collectn a emitn b; collectn b emitn 7 (= 100) a> « i 

[a :: <3; 100; 4; <2 * omit; collect> val>; 

b :: <100 7; <200;201> sub collect emit>] 

<collectn » (= 2) a emitn b; collectn b emitn a> * : 
[a :: <3; 100; 4; <2 7 ; collect> val>; 

b :: <100 7; <200;201> sub collect emit>] 

<collectn a emitn i {= 2) b; collectn b emitn a> * i 
[a :: <3; 100; 4; <2 7 ; collect> val>; 

b :: <100 7; <200;201> sub collect emit>] 

<collectn a emitn 7 (- 2) b; collectn b emitn a> * 
[a :: <3; 100; 4; <2 7 j collect> va^; 

b :: <100 «; <200;201> sub collect omit>] 

<collectn a emitn 7 (= 2) b; collectn b emitn a> * : 
[a :: <3; 100; 4; <2 7 ; collect> val>j 

b :: <100; <200;201> sub collect i (= 2) emit>] 

<collectn a emitn 7 (= 2) b; collectn b emitn a> * : 
[a :: <3j 100; 4; <2 7 ; collect val>i 

b :: <100;201 emit «>] 

[1] 

I 

 -_    . -t ^_J^-  .- -- L^*^^^. ^^^ ^^^^ ^^^^.^_.^.   -..^^..... _ _.    ,            _■■_.■_. J...J.....^.„...^._     ...    . .■ 



APPENDIX VI: COROUTINE CONTROL EXAMPLE 144 

<collectn a emitn b; collecfn ■ (=201) b emitn a> * : 
[a :: <3; 100; 4; <2 1 ; collect> val>; 

b :: <100;201 X >] 

<collectn a emitn b; collectn b emitn « (= 201) a> * 
[a :: <3; 100; 4; <2 t ; collect> val>; 

b :: <100;201 % >] 

<collectn a emitn b; collectn b emitn 7 (= 201) a> * 
[a :: <3; 100; 4; <2 « ; collect> val>; 

b :: <100;201 7 >] 

<colloctn a emitn b; collectn b emitn 'I (= 201) a> * ; 
[a :: <3; 100; 4; <2; collect i (= 201)> val>; 

b :: <100;201 7- >] 

<collectn a emitn b; collectn b emitn 7 (= 201) a> * : 
[a :: <3; 100; 4; 201 • >; 

b :: <100;201 % >] 

At this point termination of "a" must cause control to resume in "b" and then pass 
the last element ("201") to the caller of "b". Note, the caller of "b" would have received 

the first element of "b" at the point marked [1], after the return from the «mit. This is 
the point ([1]) when the value of emit is defined. 

,   i 
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APPENDIX VII 

RECURSION ORTHOGONAL TO SEQUENTIALITY 

The functions below implement the "bottom up" function: 

t bu f :: t atom? els« (t .   fbu f *) f) 

Preliminary functions: 

a :: 1st 

v :: 2nd 

top :: 1st 

stacK push x :: <x> cone stacK 
stack pop ;: stack tail 

Top level function: 

t bu f :: «i>; «>;<>» / (g ») va| v t0p lsf 

where 

s g :: s a notempty exs 

top empty then 

<% a pop; s v pop pop push 

(s v pop top cone <s v top f>)> 
else 

s a top 1st atom? then 

<$ a pop push (a top tail); 

s v pop purh (s v top cone <s a top lst>)> 
else 

<$ a pop push (a top tail) push (a top 1st); 
s v push <» 

J 
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IMPLEMENTATION OF GEN IN THE INITIAL BASIS 

For  a potentially unbounded sequence, s, and an index, i, the following functions 

define the sequence s with it ith element "gened"--e.g. 

<li <3i6>; 7> genf 2 ■ <1; 3; 6; 7> 

To  obtain  the  actual function, both s and i must be encoded in a second sequence 

argument to f.    They are passed as globals here for "clarity". 

s genf i :: <nil; 1; 0> / (f *) .   (1st ») 

where 

q f ::;q 2nd = i then (s sub i lengthge (q 3rd + 1)) 

ther <s sub i sub (q 3rd + 1); q 2ndi q 3rd + 1> 

else 
(s lengthge (q 2nd) exs 

then <s sub (q 2nd); q 2nd + 1; 0>) 

(The first element of q is the element of the result sequence.   The second element is an 

index for s.   The (hird is an index for s, when the second element is equal to i.) 

Note, the sub function is the first function defined in Chapter 2: 

s sub i :: i pos .   (rid*) .   s val 

None of pos, rid and lengthge is defined using gen. 

 --—■——■ ■ 
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